Prunus avium L. (Sweet Cherry) By-Products: A Source of Phenolic Compounds with Antioxidant and Anti-Hyperglycemic Properties—A Review
Abstract
:1. Introduction
2. Prunus avium L.
2.1. Origin and Production
2.2. Botanical Characteristics
2.3. Traditional Uses
3. Phenolic Compounds of Sweet Cherry By-Products
3.1. Non-Flavonoids
Phenolic Acids
3.2. Flavonoids
3.2.1. Flavones
3.2.2. Flavonols
3.2.3. Flavanones
3.2.4. Isoflavones
3.2.5. Flavan-3-ols
3.2.6. Anthocyanins
4. Biological Properties of Prunus avium L. By-Products
4.1. Antioxidant Activity
4.2. Anti-Hyperglycemic Activity
4.2.1. In Vitro and In Vivo Studies
4.2.2. Human Studies and Clinical Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonçalves, A.C.; Bento, C.; Silva, B.; Simões, M.; Silva, L.R. Nutrients, bioactive Compounda and Bioactivity: The Health Benefits of Sweet Cherries (Prunus avium L.). Curr. Nutr. Food Sci. 2018, 14, 1–20. [Google Scholar] [CrossRef]
- Kelley, D.S.; Adkins, Y.; Laugero, K.D. A Review of the Health Benefits of Cherries. Nutrients 2018, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, G.; Bacchetti, T.; Belleggia, A.; Neri, D. Cherry antioxidants: From farm to table. Molecules 2010, 15, 6993–7005. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 23 April 2021).
- Gonçalves, A.C.; Rodrigues, M.; Santos, A.O.; Alves, G.; Silva, L.R. Antioxidant Status, Antidiabetic Properties and Effects on Caco-2 Cells of Colored and Non-Colored Enriched Extracts of Sweet Cherry Fruits. Nutrients 2018, 10, 1688. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.C.; Bento, C.; Silva, B.; Silva, L.R. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res. Int. 2017, 95, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesus, F.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Exploring the phenolic profile, antioxidant, antidiabetic and anti-hemolytic potential of Prunus avium vegetal parts. Food Res. Int. 2019, 116, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Zanuso, E.; Genisheva, Z.; Rocha, C.M.R.; Teixeira, J.A. Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Görgüç, A.; Karaaslan, M.; Vardin, H.; Bilek, S.; Uygun, Ö.; Bircan, C. Sour Cherry By-products: Compositions, Functional Properties and Recovery Potentials—A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.R.; Gonçalves, A.C.; Alves, G.; Falcão, A.; García-Viguera, C.; Moreno, D.A.; Silva, L.R. Valorisation of Prunus avium L. By-Products: Phenolic Composition and Effect on Caco-2 Cells Viability. Foods 2021, 10, 1185. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Leyva-Porras, C.; Toxqui-Terán, A.; Espinosa-Solis, V. Physicochemical Properties and Antioxidant Activity of Spray-Dry Broccoli (Brassica oleracea var Italica) Stalk and Floret Juice Powders. Molecules 2021, 26, 1973. [Google Scholar] [CrossRef] [PubMed]
- Bastos, C.; Barros, L.; Duenas, M.; Calhelha, R.C.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem. 2015, 173, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Dziadek, K.; Kopeć, A.; Tabaszewska, M. Potential of sweet cherry (Prunus avium L.) by-products: Bioactive compounds and antioxidant activity of leaves and petioles. Eur. Food Res. Technol. 2019, 245, 763–772. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Czaplicki, S. The petioles and leaves of sweet cherry (Prunus avium L.) as a potential source of natural bioactive compounds. Eur. Food Res. Technol. 2018, 244, 1415–1426. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Surico, R.F.; Minervini, G.; Rizzello, C.G.; Lovino, R.; Servili, M.; Taticchi, A.; Urbani, S.; Gobbetti, M. Exploitation of sweet cherry (Prunus avium L.) puree added of stem infusion through fermentation by selected autochthonous lactic acid bacteria. Food Microbiol. 2011, 28, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Hooman, N.; Mojab, F.; Nickavar, B.; Pouryousefi-Kermani, P. Diuretic effect of powdered Cerasus avium (cherry) tails on healthy volunteers. Pak. J. Pharm. Sci. 2009, 22, 381–383. [Google Scholar] [PubMed]
- Gonçalves, A.C.; Campos, G.; Alves, G.; García-Viguera, C.; Moreno, D.A.; Silva, L.R. Physical and phytochemical compositon of 23 Portuguese sweet cherries as conditioned by variety (or genotype). Food Chem. 2021, 335, 127637. [Google Scholar] [CrossRef]
- Dias, T.R.; Alves, M.G.; Casal, S.; Oliveira, P.F.; Silva, B.M. Promising Potential of Dietary (Poly)Phenolic Compounds in the Prevention and Treatment of Diabetes Mellitus. Curr. Med. Chem. 2017, 24, 334–354. [Google Scholar] [CrossRef]
- Nunes, A.R.; Alves, M.G.; Tomas, G.D.; Conde, V.R.; Cristóvão, A.C.; Moreira, P.I.; Oliveira, P.F.; Silva, B.M. Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats. Br. J. Nutr. 2015, 113, 832–842. [Google Scholar] [CrossRef] [Green Version]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2014, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2011, 8, 228–236. [Google Scholar] [CrossRef]
- Serra, A.T.; Duarte, R.O.; Bronze, M.R.; Duarte, C.M.M. Identification of bioactive response in traditional cherries from Portugal. Food Chem. 2011, 125, 318–325. [Google Scholar] [CrossRef]
- Rosado, T.; Henriques, I.; Gallardo, E.; Duarte, A.P. Determination of melatonin levels in different cherry cultivars by high-performance liquid chromatography coupled to electrochemical detection. Eur. Food Res. Technol. 2017, 243, 1749–1757. [Google Scholar] [CrossRef]
- Mulabagal, V.; Lang, G.A.; DeWitt, D.L.; Dalavoy, S.S.; Nair, M.G. Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 2009, 57, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.P.; Silva, B.M. Nutritional and Phytomedicinal Potential of Prunus avium L. In Natural Products: Research Reviews, 1st ed.; Daya Publishing House: New Delhi, India, 2016; pp. 185–202. [Google Scholar]
- Linke, M.; Herppich, W.B.; Geyer, M. Green peduncles may indicate postharvest freshness of sweet cherries. Postharvest Biol. Technol. 2010, 58, 135–141. [Google Scholar] [CrossRef]
- Aires, A.; Dias, C.; Carvalho, R.; Saavedra, M.J. Analysis of glycosylated flavonoids extracted from sweet-cherry stems, as antibacterial agents against pathogenic Escherichia coli isolates. Acta Biochim. Pol. 2017, 64, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Sargın, S.A.; Akçicek, E. An ethnobotanical study of medicinal plants used by the local people of Alaşehir (Manisa) in Turkey, J. Ethnopharmacol. 2013, 150, 860–874. [Google Scholar] [CrossRef] [PubMed]
- Bown, D. Encyclopedia of Herbs and Their Uses; Dorling Kindersley: London, UK, 1995. [Google Scholar]
- Martin, K.R.; Coles, K.M. Consumption of 100% Tart Cherry Juice Reduces Serum Urate in Overweight and Obese Adults. Curr. Dev. Nutr. 2019, 3, nzz011. [Google Scholar] [CrossRef] [Green Version]
- Idolo, M.; Motti, R.; Mazzoleni, S. Ethnobotanical and phytomedicinal knowledge in a long-history protected area, the Abruzzo, Lazio and Molise National Park (Italian Apennines). J. Ethnopharmacol. 2010, 127, 379–395. [Google Scholar] [CrossRef]
- Alarcόn, R.; Pardo-de-Santayana, M.; Priestley, C.; Morales, R.; Heinrich, M. Medicinal and local food plants in the south of Alava(Basque Country, Spain). J. Ethnopharmacol. 2015, 176, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, J.I.; Yahia, E.M.; Rivera-Pastrana, D.M.; Rojas-Molina, A.; Zavala-Sánchez, M.Á. Nutraceutical value of black cherry Prunus serotina Ehrh. fruits: Antioxidant and antihypertensive properties. Molecules 2013, 18, 14597–14612. [Google Scholar] [CrossRef]
- Vinagre, C.; Vinagre, S.; Carrilho, E. The use of medicinal plants by the population from the Protected Landscape of “Serra de Montejunto”, Portugal. J. Ethnobiol. Ethnomed. 2019, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Tutulescu, F.; Boruzi, A.I.; Nour, V. Antibacterial activity of walnut leaves and sweet cherry stems in cooked pork patties. South. West. J. Hortic. Biol. Environ. 2019, 10, 65–75. [Google Scholar]
- Sulaiman, G.M.; Al-Amiery, A.A.H.; Mohammed, A.A.; Al-Temimi, A.A. The Effect of Cherry Sticks Extract on the Levels of Glycoproteins in Alloxan-Induced Experimental Diabetic Mice. Ann. Clin. Lab. Sci. 2012, 42, 34–41. [Google Scholar]
- Beckman, C.H. Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant. Pathol. 2000, 57, 101–110. [Google Scholar] [CrossRef]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Silveira, A.C.; Dias, J.P.; Santos, V.M.; Oliveira, P.F.; Alves, M.G.; Rato, L.; Silva, B.M. The Action of Polyphenols in Diabetes Mellitus and Alzheimer’s Disease: A Common Agent for Overlapping Pathologies. Curr. Neuropharmacol. 2019, 17, 290–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattila, P.; Hellstrom, J.; Torronen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. Int. J. Food Sci. Tecnol. 2011, 46, 2530–2537. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Res. Int. 2017, 97, 15–26. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Voća, S.; Šindrak, Z.; Dobričević, N. Flavonol and phenolic acid composition of sweet cherries (cv. Lapins) produced on six different vegetative rootstocks. Sci. Hortic. 2009, 123, 23–28. [Google Scholar] [CrossRef]
- Cook, N.C.; Samman, S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Milbury, P.E.; Chen, C.-Y.; Dolnikowski, G.G.; Blumberg, J.B. Determination of Flavonoids and Phenolics and Their Distribution in Almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Hernandez-Montes, E.; Pollard, S.E.; Vauzour, D.; Jofre-Montseny, L.; Rota, C.; Rimbach, G.; Weinberg, P.D.; Spencer, J.P.E. Activation of Glutathione Peroxidase via Nrf1 Mediates Genistein’s Protection Against Oxidative Endothelial Cell Injury. Biochem. Biophys Res. Commun. 2006, 346, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Willits, M.G.; Giovanni, M.; Prata, C.R.T.N.; Kramer, V.M.; De Luca, V.; Steffens, J.C.; Graser, G. Bio-fermentation of modified flavonoids: An example of in vivo diversification of secondary metabolites. Phytochemistry 2004, 65, 31–41. [Google Scholar] [CrossRef]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef]
- Bauer, H.; Treutter, D.; Schmid, P.P.S.; Schmitt, E.; Feucht, F. Specific accumulation of o-diphenols in stressed leaves of Prunus avium. Phytochmeistry 1989, 28, 1363–1364. [Google Scholar] [CrossRef]
- Mo, Y.Y.; Geibel, M.; Bonsall, R.F.; Gross, D.C. Analysis of Sweet cherry (Prunus avium L.) Leaves for Plant Signal Molecules That Activate the syrB Gene Required for Synthesis of the Phytotoxin, Syringomycin, by Pseudomonas syringae pv syringae. Plant. Physiol. 1995, 107, 603–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-O.; Heo, H.J.; Kim, Y.J.; Yang, H.S.; Lee, C.Y. Sweet and sour cherry phenolics and their protective effects on neuronal cells. , J. Agric. Food Chem. 2005, 53, 9921–9927. [Google Scholar] [CrossRef]
- Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Lagana, A. Flavonoids: Chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat. Prod. Res. 2011, 25, 469–495. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Anhê, F.F.; Desjardins, Y.; Pilon, G.; Dudonne, S.; Genovese, M.I.; Lajolo, F.M.; Marette, A. Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition 2013, 1, 105–114. [Google Scholar] [CrossRef]
- Osakabe, N. Flavan 3-ols improve metabolic syndrome risk factors: Evidence and mechanisms. J. Clin. Biochem. Nutr. 2013, 52, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Khanbabaee, K.; van Ree, T. Tannins: Classification and Definition. Nat. Prod. Rep. 2001, 18, 641–649. [Google Scholar] [CrossRef]
- Serradilla, M.J.; Hernández, A.; López-Corrales, M.; Ruiz-Moyano, S.; Córdoba, M.; Martín, A. Compositon of the cherry (Prunus avium L. and Prunus cerasus L.; Rosaceae). In Nutritional Composition of Fruit Cultivars; Simmonds, M.J.S., Preedy, V.R., Eds.; Academic Press: London, UK, 2016; pp. 127–147. [Google Scholar]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Gálan-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Chockchaisawasdee, S.; Golding, J.B.; Vuong, Q.V.; Papoutsis, K.; Stathopoulos, C.E. Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends Food Sci. Technol. 2016, 55, 72–83. [Google Scholar] [CrossRef]
- Pascual-Teresa, S.; Moreno, D.A.; García-Viguera, C. Flavanols and Anthocyanins in Cardiovascular Health: A Review of Current Evidence. Int. J. Mol. Sci. 2010, 11, 1679–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballistreri, G.; Continella, A.; Gentile, A.; Amenta, M.; Fabroni, S.; Rapisarda, P. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem. 2013, 140, 630–638. [Google Scholar] [CrossRef]
- Jesus, F.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Health Benefits of Prunus avium Plant Parts: An Unexplored Source Rich in Phenolic Compounds. Food Rev. Int. 2020. [Google Scholar] [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. Soc. 2016, 24, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Porras, C.; Román-Aguirre, M.; Cruz-Alcantar, P.; Pérez-Urizar, J.T.; Saavedra-Leos, M.Z. Application of Antioxidants as an Alternative Improving of Shelf Life in Foods. Polysaccharides 2021, 2, 594–607. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citruspee. Food 2020, 132, 109114. [Google Scholar]
- Afonso, S.; Oliveira, I.V.; Meyer, A.S.; Aires, A.; Saavedra, M.J.; Gonçalves, B. Phenolic Profile and Bioactive Potential of Stems and Seed Kernels of Sweet Cherry Fruit. Antioxidants 2020, 9, 1295. [Google Scholar] [CrossRef]
- Prvulovic, D.; Popovic, M.; Malenčić, D.; Ljubojevic, M.; Ognjanov, V. Phenolic compounds in sweet cherry (Prunus avium L.) petioles and their antioxidant properties. Res. J. Agric. Sci. 2011, 43, 198–202. [Google Scholar]
- Aires, A.; Marrinhas, E.; Carvalho, R.; Dias, C.; Saavedra, M.J. Phytochemical composition and antibacterial activity of hydroalcoholic extracts of Pterospartum tridentatum and mentha pulegium against Staphylococcus aureus isolates. Biomed. Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Inhibition of α-Amylase and α-Glucosidase Activity by Tea and Grape Seed Extracts and their Constituent Catechins. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibitoye, O.B.; Ajiboye, T.O. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Arch. Physiol. Biochem. 2018, 124, 410–417. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, J.; Gu, X.; Gu, H.; Kang, W. Antioxidant and a-glucosidase inhibitory activity of red raspberry (Harrywaters) fruits in vitro. Afr. J. Pharm. Pharmacol. 2012, 6, 3118–3123. [Google Scholar] [CrossRef]
- Mandave, P.; Rani, S.; Kuvalekar, A.; Ranjekar, P.K. Antiglycation, antioxidant and antidiabetic activity of mature Strawberry (Fragaria × ananassa) fruits. Int. J. Appl. Biol. Pharm. Technol. 2013, 4, 168. [Google Scholar]
- Akkarachiyasit, S.; Yibchok-Anun, S.; Wacharasindhu, S.; Adisakwattana, S. In Vitro Inhibitory Effects of Cyanidin-3-rutinoside on Pancreatic α-Amylase and Its Combined Effect with Acarbose. Molecules 2011, 16, 2075–2083. [Google Scholar] [CrossRef]
- Cao, J.; Li, X.; Liu, Y.; Leng, F.; Li, X.; Sun, C.; Chen, K. Bioassay-based isolation and identification of phenolics from sweet cherry that promote active glucose consumption by HepG2 cells. J. Food Sci. 2015, 80, C234–C240. [Google Scholar] [CrossRef]
- Fang, X.-K.; Gao, J.; Zhu, D.-N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 2008, 82, 615–622. [Google Scholar] [CrossRef]
- Chen, Q.C.; Zhang, W.Y.; Jin, W.; Lee, I.S.; Min, B.-S.; Jung, H.-J.; Na, M.; Lee, S.; Bae, K. Flavonoids and isoflavonoids from Sophorae Flos improve glucose uptake in vitro. Planta Med. 2010, 6, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Lachin, T.; Reza, H. Anti diabetic effect of cherries in alloxan induced diabetic rats. Recent Pat. Endocr. Metab. Immune Drug Discov. 2012, 6, 67–72. [Google Scholar] [CrossRef]
- Noratto, G.D.; Lage, N.N.; Chew, B.P.; Mertens-Talcott, S.U.; Talcott, S.T.; Pedrosa, M.L. Non-anthocyanin phenolics in cherry (Prunus avium L.) modulate IL-6, liver lipids and expression of PPARδ and LXRs in obese diabetic (db/db) mice. Food Chem. 2018, 266, 405–414. [Google Scholar] [CrossRef]
- Hsu, F.L.; Chen, Y.C.; Cheng, J.T. Caffeic Acid as Active Principle From the Fruit of Xanthium Strumarium to Lower Plasma Glucose in Diabetic Rats. Planta Med. 2000, 66, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Hafizur, R.M.; Hameed, A.; Shukrana, M.; Raza, S.A.; Chishti, S.; Kabir, N.; Siddiqui, R.A. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 2015, 22, 297–300. [Google Scholar] [CrossRef]
- Henry-Vitrac, C.; Ibarra, A.; Roller, M.; Mérillon, J.-M.; Vitrac, X. Contribution of chlorogenic acids to the inhibition of human hepatic glucose-6-phosphatase activity in vitro by Svetol, a standardized decaffeinated green coffee extract. J. Agric. Food Chem. 2010, 58, 4141–4144. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.W.; Hsu, A.; Tan, B.K.H. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: A contributor to the beneficial effects of coffee on diabetes. PLoS ONE 2012, 7, e32718. [Google Scholar] [CrossRef] [Green Version]
- Dias, T.R.; Bernardino, R.L.; Meneses, M.J.; Sousa, M.; Sá, R.; Alves, M.G.; Silva, B.M.; Oliveira, P.F. Emerging Potential of Natural Products as an Alternative Strategy to Pharmacological Agents Used Against Metabolic Disorders. Curr. Drug Metab. 2016, 17, 582–597. [Google Scholar] [CrossRef]
- Matsui, T.; Ebuchi, S.; Kobayashi, M.; Fukui, K.; Sugita, K.; Terahara, N.; Matsumoto, K. Anti-hyperglycemic Effect of Diacylated Anthocyanin Derived from Ipomoea Batatas Cultivar Ayamurasaki can be Achieved Through the Alpha-Glucosidase Inhibitory Action. J. Agric. Food Chem. 2002, 50, 7244–7248. [Google Scholar] [CrossRef]
- Kelley, D.S.; Rasooly, R.; Jacob, R.A.; Kader, A.A.; Mackey, B.E. Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. , J. Nutr. 2006, 136, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.; González-Gómez, D.; Lozano, M.; Barriga, C.; Paredes, S.D.; Rodríguez, A.B. A Jerte valley cherry product provides beneficial effects on sleep quality. Influence on aging. J. Nutr. Heal. Aging. 2013, 17, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasam, B.; Vareed, S.K.; Olson, L.K.; Nair, M.G. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 2005, 53, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Annuzzi, G.; Pacini, G.; Costabile, G.; Vetrani, C.; Vitale, M.; Griffo, E.; Giacco, A.; De Natale, C.; Cocozza, S.; et al. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: A controlled randomised intervention trial. Diabetologia 2015, 58, 1551–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Plant Part Used | Medicinal Uses |
---|---|
Fruits | Urological diseases [29,30], gouty arthritis [31], expectorant [32], gastrointestinal disorders [32,33], anti-hyperglycemic [6,13], sleep regulation [2,34,35], obesity [13]; |
Leaves | Anti-hyperglycemic [7,13], antioxidant [7], hyperthension [34], cardiovascular diseases [13]; |
Stems | Urological diseases [35], anti-hyperglycemic [7], diuretic [17], antibacterial activity [36], anti-hypercholesterolaemic [37]. |
Number of Carbon Atom | Structure | Class |
---|---|---|
6 | C6 | Simple phenolics Benzoquinones |
7 | C6-C1 | Hydroxybenzoic acids |
8 | C6-C2 | Acetophenones Phenylacetic acids |
9 | C6-C3 | Hydroxycinnamic acids Coumarins |
10 | C6-C4 | Naphthoquinones |
13 | C6-C1-C6 | Xanthones |
14 | C6-C2-C6 | Stilbenes |
15 | C6-C3-C6 | Flavonoids Isoflavonoids |
18 | (C6-C3)2 | Lignans |
30 | (C6-C3-C6)2 | Bioflavonoids |
N | (C6-C3-C6)n | Condensed tannins |
Phenolic Compound | Prunus avium L. Part | Content (µg/g dw) | References |
---|---|---|---|
Hydroxybenzoic Acids | |||
Hydroxybenzoic acid derivative | Fruits | 33.26–1839.54 | [5,6] |
Stems | 299.3–918.4 | [7] | |
Protocatechuic acid derivative | Fruits | 33.3–1539.0 | [18] |
Protocatechuic acid-glycoside | Fruits | 5.9–476.2 | [18] |
Hydroxycinnamic Acids | |||
3-O-Caffeoylquinic acid | Fruit | 4.2–1733.4 | [5,12,18] |
Stems | 1154.9–1178.2 | [7] | |
Leaves | 11.28–8374.8 | [7] | |
4-Caffeoylquinic acid | Fruit | 1.7–130.9 | [18] |
Leaves | 466.37–908.93 | [10] | |
3-Coumaroyl-4-caffeoylquinic acid | Fruits | 2.0–357.1 | [18] |
3-Coumaroyl-5-caffeoylquinic acid | Fruits | 0.6–93.5 | [18] |
4-Coumaroylquinic acid | Fruit | 3.1–79.7 | [18] |
3,5-Dicaffeoylquinic acid | Fruit | 0.4–29.7 | [18] |
Stems | 158.85 | [10] | |
4,5-Dicaffeoylquinic acid | Fruit | 5.7–44.2 | [18] |
Caffeoyl hexose | Fruit | 3.1–271.3 | [18] |
Caffeoylquinic acid-glycoside | Fruit | 2.1–617.4 | [18] |
Stems | 1936.4–2117.33 | [10] | |
cis-3-O-Caffeoylquinic acid | Fruit | 19.08–2342.8 | [18] |
Stems | 196.23–320.23 | [10] | |
Leaves | 18,667.85–20,215.87 | [10] | |
Flowers | 15,996.99–23,294.66 | [10] | |
cis-3-Coumaroylquinic acid | Fruit | 0.8–191.1 | [18] |
Coumaroyl hexose derivative | Fruit | 6.9–143.2 | [18] |
Dicaffeoylquinic acid | Leaves | 2210.36–3375.96 | [10] |
Ferulic acid hexoside | Stems | 170–300 | [12] |
Feruloyl di-hexose | Fruit | 0.9–82.0 | [18] |
Feruloyl hexose | Fruit | 3.50–475.4 | [18] |
Feruloylquinic acid | Fruit | 3.6–3.8 | [18] |
trans-3-Coumaroylquinic acid | Fruit | 7.0–71.6 | [18] |
trans-5-Caffeoylquinic acid | Fruit | 1.1–145.7 | [5,18] |
Leaves | 24,425.04–27,210.54 | [10] | |
Stems | 1095.96–1338.68 | [10] | |
Flowers | 640.77–3841.41 | [10] | |
Sinapic acid | Stems | 170–290 | [12] |
Caffeic acid | Fruits | 11.19 | [5] |
cisp-coumaroylquinic acid | Fruits | 560 | [12] |
Hydroxycinnamic acid derivative | Fruits | 33.95–86.56 | [5] |
Stems | 361.8–905.3 | [7] | |
Leaves | 327.4–12,932.2 | [7] | |
Flowers | 997.9–16,467.8 | [7] | |
p-Coumaric acid | Fruits | 11.32–16.91 | [5] |
Protocatechuic acid-glycoside | Fruits | 5.9–476.2 | [18] |
p-Coumaric acid derivative | Fruits | 2.35–28.49 | [5] |
Stems | 119.4–197.0 | [7] | |
Leaves | 689.0–1482.13 | [7,10] | |
Flowers | 330.6–2127.0 | [7] | |
p-Coumaric acid hexoside | Stems | 250–680 | [12] |
p-Coumaroylquinic acid | Fruits | 4.06–28.49 | [6] |
Stems | 100–530 | [7,12] | |
Leaves | 450.79–927.7 | [7,10] | |
trans p-coumaroylquinic acid | Fruits | 230 | [12] |
Flavones | |||
Apigenin | Stems | 32.7 | [28] |
Chrysin-7-O-glucoside | Stems | 500.0 | [12] |
Flavonols | |||
Aromadendrin-7-O-hexoside | Stems | 2660 | [12] |
Aromadendrin-O-hexoside | Stems | 310 | [12] |
Isorhamnetin 3-O-rutinoside | Fruits | 5.6–29.8 | [18] |
Kaempferol 3-O-glucoside | Stems | 74.7–243.6 | [7] |
Leaves | 594.2–1467.7 | [7] | |
Flowers | 429.4–787.3 | [7] | |
Kaempferol 3-O-rutinoside | Fruits | 5.29–14.45 | [5,18] |
Stems | 161.3–417.0 | [7] | |
Leaves | 1298.58–3125.9 | [7,10] | |
Flowers | 468.0–671.5 | [7] | |
Kaempferol derivative | Fruits | 155.1–349.7 | [18] |
Flowers | 146.6–396.9 | [7] | |
Kaempferol hexoside | Fruits | 1.0–11.4 | [18] |
Leaves | 1542.19 | [10] | |
Kaempferol-O-rutinoside-O-hexoside | Flowers | 2676.77–5313.35 | [10] |
Methyl- aromadendrin-O-hexoside | Stems | 60 | [12] |
Quercetin | Fruits | 2.32–9.22 | [5] |
Quercetin 3-O-glucoside | Fruits | 4.96–14.72 | [5] |
Stems | 61.0–140.0 | [7] | |
Leaves | 900.4–1794.9 | [7] | |
Quercetin 3-O-hexoside | Fruits | 0.7–9.3 | [18] |
Flowers | 555.16–702.74 | [10] | |
Quercetin 3-O-rutinoside | Fruits | 1.0–53.8 | [5,18] |
Stems | 559.1–643.3 | [7] | |
Leaves | 3653.48–6728.0 | [7,10] | |
Flowers | 1823.94–2547.3 | [7,10] | |
Quercetin 7-O-glucoside-3-O-rutinoside | Fruits | 0.9–46.1 | [18] |
Quercetin derivative | Fruits | 0.7–30.5 | [18] |
Stems | 255.4–313.2 | [7] | |
Leaves | 1742.9–2537.3 | [7] | |
Flowers | 3149.5–3701.9 | [7] | |
Quercetin O-rutinoside-O-hexoside | Fruits | 420 | [12] |
Taxifolin-7-O-hexoside | Stems | 790 | [12] |
Taxifolin-O-deoxyhexosylhexoside | Fruits | 660 | [12] |
Taxifolin-O-hexoside | Fruits | 130 | [12] |
Flavanones | |||
Naringenin 7-O-glucoside | Stems | 2836.4–4036.2 | [7] |
Naringenin 7-O-hexoside | Stems | 1482.67–1940.77 | [10] |
Naringenin-O-hexoside | Fruits | 38.1–170 | [12,18] |
Sakuranetin | Stems | 50.7–5700.9 | [7] |
Leaves | 1005.3 | [7] | |
Flowers | 3065.9 | [7] | |
Sakuranetin 5-O-glucoside | Fruits | 620 | [12] |
Stems | 3630 | [12] | |
Sakuranetin 5-O-hexoside | Leaves | 214.66–265.89 | [10] |
Sakuranetin derivative | Leaves | 196.5–2077.3 | [7] |
Stems | 11,555.9–13,500.3 | [7] | |
Sakuranetin-O-pentosylhexoside | Stems | 360 | [12] |
Pinocembrin-O-pentosylhexoside | Stems | 230 | [12] |
Isoflavones | |||
Genistein | Leaves | 7324.5 | [7] |
Stems | 697.1 | [7] | |
Genistein derivative | Stems | 1044.8 | [7] |
Genistein-7-O-glucoside | Stems | 182.0 | [12] |
Flavan-3-ols | |||
Catechin | Fruits | 22.4 | [18] |
Stems | 5014.0–5259.5 | [7] | |
Catechin hexoside | Fruits | 1680 | [12] |
Procyanidin dimer B type 1 | Fruits | 6.2–290.6 | [18] |
Procyanidin dimer B type 2 | Fruits | 28.1–162.7 | [7] |
Stems | 7149.5–8810.67 | [18] | |
Procyanidin dimer B type 3 | Fruits | 15.0–18.0 | [18] |
Anthocyanins | |||
Cyanidin 3-O-rutinoside | Fruits | 3.6–40,139.2 | [5,18,23,43,44] |
Cyanidin 3-O-glucoside | Fruits | 2.19–7030 | [5,23,43,44] |
Delphinidin 3-O-rutinoside | Fruits | 2.1–204.8 | [18] |
Pelargonidin 3-O-rutinoside | Fruits | 0.9–322.3 | [5,18,23,43,44] |
Peonidin 3-O-glucoside | Fruits | 0.1–53.0 | [23] |
Peonidin 3-O-rutinoside | Fruits | 0.1–59.9 | [5,18,23,43,44] |
Part of Plant | Extract | Type of Study | Main Outcomes | References |
---|---|---|---|---|
Stems | Aqueous acetone 70% | DPPH free radical scavenging activity | Genotypes with highest phenolic content possess higher DPPH scavenging activity. | [74] |
Stems | Hydroxymethanolic 80:20 (v/v) Aqueous infusion Decoction | DPPH free radical scavenging activity Reducing power by FRAP method Inhibition of β-carotene bleaching Thiobarbituric acid test | All preparations revealed a strong antioxidant activity, but the hydromethanolic extract was the most relevant; The antioxidant potential is probably correlated with phenolic content. | [12] |
Stems Leaves Flowers | Ethanol/Water 1:1 (v/v) Aqueous Infusion | DPPH free radical scavenging activity Nitric oxide assay Superoxide radical assay In vitro RO•-induced oxidative damage in human erythrocytes | Hydroethanolic extracts of cherry stems and leaves were the most active against DPPH and superoxide radicals. Aqueous infusion of stems showed high antioxidant activity against nitric oxide radicals; Hydroethanolic extract of stems was the most active against hemolysis and lipid peroxidation; Flowers’ hydroethanolic extracts show good antioxidant activity against hemoglobin oxidation. | [7] |
Stems | Methanol (70%) | Total antioxidant activity by ABTS•+ | Antioxidant activity is dependent on extraction method. | [28] |
Stems | Methanol (70%) | Total antioxidant activity by ABTS•+ DPPH free radical scavenging activity Inhibition of β-carotene bleaching Reducing power by FRAP method | Positive correlation between the antioxidant potential and the content of phenolic compounds. | [73] |
Leaves Stems Flowers | Ethanol/Water 50:50 (v/v) Aqueous Infusion | DPPH free radical scavenging activity | Hydroethanolic extract and aqueous infusion of stems showed high antioxidant activity. | [10] |
Part of Plant/Compounds | Extract | Type of Study | Main Outcomes | References |
---|---|---|---|---|
Stems, leaves and flowers | Ethanol/Water 1:1 (v/v) Aqueous Infusion | In vitro | Inhibition of α-glucosidase enzyme in a concentration-dependent manner. | [7] |
Fruits | Ethanol 70% | In vitro | Inhibition of α-glucosidase enzyme in a concentration-dependent manner. | [5,6] |
Cyanidin-3-rutinoside | n.a. | In vitro | Inhibition of α-amilase enzyme in a concentration-dependent manner. | [82] |
Hydroxycinnamic acids, flavonols, and anthocyanins | Hydroxycinnamic acid-rich fraction Flavonol-rich fraction Anthocyanin-rich fraction | In vitro | Promotion of cellular glucose consumption by HepG2 cells. | [83] |
Kaempferol and quercetin | n.a. | In vitro | ↑ Insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes. | [84] |
Rutin, quercetin, kaempferol, genistein | n.a. | In vitro | Improved basal glucose uptake in HepG2 cells. | [85] |
Fruits | Ingestion of 200 mg/kg body weight of cherries | In vivo | ↓ Blood glucose; ↓ Urinary microalbumin; ↑ Creatinine excretion level in urea. | [86] |
Caffeic, ferulic, gallic, and protocatechuic acids | Gavaged (40 mg/kg body weight) | In vivo | ↓ Hyperglycemia; ↓ Insulin resistance; ↓ Dyslipidemia; ↓ Oxidative stress. | [79] |
Fruit | Anthocyanin-depleted cherry powder | In vivo | Protective effects in the liver; Prevent hepatic inflammation in diabetic conditions; ↓ Fasting glucose levels. | [87] |
Caffeic acid | 0.5–3 mg/kg body weight | In vivo | ↓ Plasma glucose level in insulin-resistant rats; ↑ Glucose uptake into the isolated adipocytes in a concentration-dependent manner. | [88] |
Cinnamic acid | 5–10 mg/kg body weight | In vivo and in vitro | ↓ Blood glucose levels in a time- and dose-dependent manner; ↑ Glucose tolerance; ↑ Glucose-stimulated insulin secretion in isolated islets. | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, A.R.; Gonçalves, A.C.; Falcão, A.; Alves, G.; Silva, L.R. Prunus avium L. (Sweet Cherry) By-Products: A Source of Phenolic Compounds with Antioxidant and Anti-Hyperglycemic Properties—A Review. Appl. Sci. 2021, 11, 8516. https://doi.org/10.3390/app11188516
Nunes AR, Gonçalves AC, Falcão A, Alves G, Silva LR. Prunus avium L. (Sweet Cherry) By-Products: A Source of Phenolic Compounds with Antioxidant and Anti-Hyperglycemic Properties—A Review. Applied Sciences. 2021; 11(18):8516. https://doi.org/10.3390/app11188516
Chicago/Turabian StyleNunes, Ana R., Ana C. Gonçalves, Amílcar Falcão, Gilberto Alves, and Luís R. Silva. 2021. "Prunus avium L. (Sweet Cherry) By-Products: A Source of Phenolic Compounds with Antioxidant and Anti-Hyperglycemic Properties—A Review" Applied Sciences 11, no. 18: 8516. https://doi.org/10.3390/app11188516
APA StyleNunes, A. R., Gonçalves, A. C., Falcão, A., Alves, G., & Silva, L. R. (2021). Prunus avium L. (Sweet Cherry) By-Products: A Source of Phenolic Compounds with Antioxidant and Anti-Hyperglycemic Properties—A Review. Applied Sciences, 11(18), 8516. https://doi.org/10.3390/app11188516