Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review
Abstract
:1. Introduction
2. Fabrication and Operational Issues
2.1. Mix Design
2.2. Dispersion
2.3. Mixing, Moulding and Curing
2.4. Electrical Configuration and Measurements
2.5. Environmental Effects and Durability
3. Applications to SHM of Structural Prototypes
3.1. Reduced-Scale Members
3.2. Medium and Full-Scale Members
4. Discussion and Open Issues
4.1. Fabrication
4.2. Sensing Applications
5. Concluding Remarks
- Research studies focusing on the application of CSCs for SHM of full-scale structural RC members are still limited, and further investigations are required.
- Small CSC sensors are more effective than full-scale CSC elements for SHM applications due to reduced cost and installation complexity, higher accuracy of measurements, and potential to achieve dense distributions of sensors. Nevertheless, some relevant issues are still open, such as minimum number of sensors and influence of installation methodology on the sensing performance.
- For SHM applications to full-scale members at high-stress levels, the mechanical compatibility between the concrete of the hosting member and the cementitious matrix of sensors represents a critical issue, and therefore concrete matrix might be preferable for CSCs. However, the presence of aggregates introduces some critical points about filler dispersion and optimal concentration.
- So far, CSCs have been applied for monitoring pure or uncoupled loading conditions, to which, nonetheless, not all structural cases can be reported. Therefore, the sensing performance of CSCs in the presence of more complex stress states should be investigated. Furthermore, the promising sensing performance of CSCs as dynamic sensors requires more comprehensive verifications in order to establish relevant technical features (such as range of applicability and sensitivity), eventually taking into account different schemes or dynamic sources.
- Finally, significant issues such as ageing phenomena, durability, or data acquisition and data transmission solutions for SHM applications need to be extensively studied.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wangler, T.; Roussel, N.; Bos, F.P.; Salet, T.A.; Flatt, R.J. Digital Concrete: A Review. Cem. Concr. Res. 2019, 123, 105780. [Google Scholar] [CrossRef]
- Enright, M.P.; Frangopol, D. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Eng. Struct. 1998, 20, 960–971. [Google Scholar] [CrossRef]
- Cassese, P.; De Risi, M.T.; Verderame, G.M. A modelling approach for existing shear-critical RC bridge piers with hollow rectangular cross section under lateral loads. Bull. Earthq. Eng. 2019, 17, 237–270. [Google Scholar] [CrossRef]
- Rainieri, C.; Magalhães, F.; Gargaro, D.; Fabbrocino, G.; Cunha, A. Predicting the variability of natural frequencies and its causes by Second-Order Blind Identification. Struct. Health Monit. 2019, 18, 486–507. [Google Scholar] [CrossRef]
- Rainieri, C.; Gargaro, D.; Fabbrocino, G.; Maddaloni, G.; Di Sarno, L.; Prota, A.; Manfredi, G. Shaking table tests for the ex-perimental verification of the effectiveness of an automated modal parameter monitoring system for existing bridges in seismic areas. Struct. Cont. Health Monit. 2018, 25, e2165. [Google Scholar] [CrossRef]
- Rehman, S.K.U.; Ibrahim, Z.; Memon, S.A.; Jameel, M. Nondestructive test methods for concrete bridges: A review. Constr. Build. Mater. 2016, 107, 58–86. [Google Scholar] [CrossRef] [Green Version]
- UNI (Ente Italiano di Normazione). UNI/TR 11634:2016 Technical Report-Linee Guida per il Monitoraggio Strutturale; UNI: Milan, Italy, 2016. (In Italian) [Google Scholar]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 2006, 15, 737–748. [Google Scholar] [CrossRef]
- Banthia, N.; Djeridane, S.; Pigeon, M. Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cem. Concr. Res. 1992, 22, 804–814. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G.; De Magistris, F.S. An Integrated Seismic Monitoring System for a Full-Scale Embedded Retaining Wall. Geotech. Test. J. 2013, 36. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Kwon, E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 2009, 20, 445501. [Google Scholar] [CrossRef]
- Birgin, H.B.; D’Alessandro, A.; Laflamme, S.; Ubertini, F. Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing. Sensors 2020, 20, 4518. [Google Scholar] [CrossRef]
- Chen, P.-W.; Chung, D.D.L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Mater. Struct. 1993, 2, 22–30. [Google Scholar] [CrossRef]
- Brandt, A.M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engi-neering. Compos. Struct. 2008, 86, 3–9. [Google Scholar] [CrossRef]
- Berrocal, C.G.; Hornbostel, K.; Geiker, M.R.; Löfgren, I.; Lundgren, K.; Bekas, D.G. Electrical resistivity measurements in steel fibre reinforced cementitious materials. Cem. Concr. Compos. 2018, 89, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liu, J.; Yang, F. Three-phase composite conductive concrete for pavement deicing. Constr. Build. Mater. 2015, 75, 129–135. [Google Scholar] [CrossRef]
- Shi, L.; Lu, Y.; Bai, Y. Mechanical and Electrical Characterisation of Steel Fiber and Carbon Black Engineered Cementitious Composites. Procedia Eng. 2017, 188, 325–332. [Google Scholar] [CrossRef]
- Huang, X. Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369–2403. [Google Scholar] [CrossRef]
- Vossoughi, F. Electrical Resistivity of Carbon Fiber Reinforced Concrete; Department of Civil Engineering: Berkeley, CA, USA, 2004. [Google Scholar]
- Azhari, F. Cement-Based Sensors for Structural Health Monitoring. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2008. [Google Scholar]
- Azhari, F.; Banthia, N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem. Concr. Compos. 2012, 34, 866–873. [Google Scholar] [CrossRef]
- Donnini, J.; Bellezze, T.; Corinaldesi, V. Mechanical, electrical and self-sensing properties of cementitious mortars containing short carbon fibers. J. Build. Eng. 2018, 20, 8–14. [Google Scholar] [CrossRef]
- Han, B.; Ding, S.; Yu, X. Intrinsic self-sensing concrete and structures: A review. Measurement 2015, 59, 110–128. [Google Scholar] [CrossRef]
- Kim, H.K.; Nam, I.W.; Lee, H.K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement com-posites by incorporation of silica fume. Compos. Struct. 2014, 107, 60–69. [Google Scholar] [CrossRef]
- Lee, S.-J.; You, I.; Zi, G.; Yoo, D.-Y. Experimental Investigation of the Piezoresistive Properties of Cement Composites with Hybrid Carbon Fibers and Nanotubes. Sensors 2017, 17, 2516. [Google Scholar] [CrossRef] [Green Version]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Yu, X.; Kwon, E. A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 2009, 18. [Google Scholar] [CrossRef]
- Xiao, H.; Li, H.; Ou, J. Modeling of piezoresistivity of carbon black filled cement-based composites under multi-axial strain. Sensors Actuators A Phys. 2010, 160, 87–93. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D. Partial replacement of carbon fiber by carbon black in multifunctional cement–matrix composites. Carbon 2007, 45, 505–513. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, S.; Dong, S.; Li, Z.; Ouyang, J.; Yu, X.; Han, B. Piezoresistivity, mechanisms and model of cement-based ma-terials with CNT/NCB composite fillers. Mater. Res. Express 2017, 4, 125704. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R. A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites. J. Nanomater. 2013, 2013, 1–19. [Google Scholar] [CrossRef]
- Chuah, S.; Pan, Z.; Sanjayan, J.G.; Wang, C.M.; Duan, W.H. Nano reinforced cement and concrete composites and new per-spective from graphene oxide. Constr. Build. Mater. 2014, 73, 113–124. [Google Scholar] [CrossRef]
- Xie, P.; Gu, P.; Beaudoin, J.J. Electrical percolation phenomena in cement composites containing conductive fibers. J. Mater. Sci. 1996, 31, 4093–4097. [Google Scholar] [CrossRef]
- Chung, D.D.L. Piezoresistive Cement-Based Materials for Strain Sensing. J. Intell. Mater. Syst. Struct. 2002, 13, 599–609. [Google Scholar] [CrossRef]
- Hanxun, B.; Yu, X.; Ou, J. Effect of water content on the piezoresistivity of MWNT/cement composites. J. Mater. Sci. 2010, 45, 3714–3719. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Tao, Z.; Wang, K. Piezoresistive properties of cement-based sensors: Review and perspective. Constr. Build. Mater. 2019, 203, 146–163. [Google Scholar] [CrossRef]
- Banfill, P.; Starrs, G.; Derruau, G.; McCarter, W.J.; Chrisp, T. Rheology of low carbon fibre content reinforced cement mortar. Cem. Concr. Compos. 2006, 28, 773–780. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Kwon, E.; Ou, J. Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites. J. Compos. Mater. 2011, 46, 19–25. [Google Scholar] [CrossRef]
- Rainieri, C.; Song, Y.; Fabbrocino, G.; Schulz, M.J.; Shanov, V. CNT-cement based composites: Fabrication, self-sensing prop-erties and prospective applications to Structural Health Monitoring. In Proceedings of the 4th International Conference on Smart Materials and Nanotechnology in Engineering, Gold Coast, QLD, Australia, 10–12 July 2013; Volume 8793, p. 87930V. [Google Scholar]
- Chen, P.-W.; Chung, D. Concrete as a new strain/stress sensor. Compos. Part B: Eng. 1996, 27, 11–23. [Google Scholar] [CrossRef]
- Chung, D.D. Dispersion of Short Fibers in Cement. J. Mater. Civ. Eng. 2005, 17, 379–383. [Google Scholar] [CrossRef]
- Papo, A.; Piani, L. Effect of various superplasticizers on the rheological properties of Portland cement pastes. Cem. Concr. Res. 2004, 34, 2097–2101. [Google Scholar] [CrossRef]
- Wand, C.; Jiao, G.-S.; Li, B.-L.; Peng, L.; Feng, Y.; Gao, N.; Li, K.-Z. Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites. Ceram. Int. 2017, 43, 15122–15132. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.-G.; Yuan, J.; Ou, J. Microstructure of cement mortar with nano-particles. Compos. Part B Eng. 2004, 35, 185–189. [Google Scholar] [CrossRef]
- Al-Dahawi, A.M.K.; Öztürk, O.; Emami, F.; Yıldırım, G.; Şahmaran, M. Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Constr. Build. Mater. 2016, 104, 160–168. [Google Scholar] [CrossRef]
- Liew, K.M.; Kai, M.; Zhang, L. Carbon nanotube reinforced cementitious composites: An overview. Compos. Part A Appl. Sci. Manuf. 2016, 91, 301–323. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, G.; Wang, W. The effects of ultrasonic oscillation on the form of carbon nanotubes. J. Petrochem. Univ. 2013, 26, 57–61. [Google Scholar]
- Jia, Z.; Wang, Z.; Liang, J.; Wei, B.; Wu, D. Production of short multi-walled carbon nanotubes. Carbon 1999, 37, 903–906. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement com-posites. Cem. Concr. Compos. 2007, 29, 377–382. [Google Scholar] [CrossRef]
- Duan, W.H.; Wang, Q.; Collins, F. Dispersion of carbon nanotubes with SDS surfactants: A study from a binding energy perspective. Chem. Sci. 2011, 2, 1407–1413. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, H.; Xu, R. Research on the dispersion of carbon nanotubes by ultrasonic oscillation, surfactant and centrifu-gation respectively and fiscal policies for its industrial development. Ultrason. Sonochem. 2018, 48, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ouyang, J.; Ruan, Y.; Zheng, Q.; Wang, J.; Yu, X.; Han, B. Effect of mix proportion and processing method on the mechanical and electrical properties of cementitious composites with nano/fiber fillers. Mater. Res. Express 2018, 5, 015706. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Ubertini, F.; García-Macías, E.; Triguero, R.C.; Downey, A.; Laflamme, S.; Meoni, A.; Materazzi, A.L. Static and Dynamic Strain Monitoring of Reinforced Concrete Components through Embedded Carbon Nanotube Cement-Based Sensors. Shock. Vib. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Rao, R.K.; Sasmal, S. Smart nano-engineered cementitious composite sensors for vibration-based health monitoring of large structures. Sensors Actuators A Phys. 2020, 311, 112088. [Google Scholar] [CrossRef]
- Xin, C.; Shoude, W.; Lingchao, L.; Shifeng, H. Influence of preparation process on piezo-conductance effect of carbon fiber sulfoaluminate cement composite. J. Compos. Mater. 2011, 45, 2033–2037. [Google Scholar] [CrossRef]
- Fu, X.; Chung, D. Effect of curing age on the self-monitoring behavior of carbon fiber reinforced mortar. Cem. Concr. Res. 1997, 27, 1313–1318. [Google Scholar] [CrossRef]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 2014, 46, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Wang, Y.-W.; Ni, Y.-Q.; Han, B. Structural modal identification and health monitoring of building structures using self-sensing cementitious composites. Smart Mater. Struct. 2020, 29, 055013. [Google Scholar] [CrossRef]
- Wang, L.; Aslani, F. A review on material design, performance, and practical application of electrically conductive cementitious composites. Constr. Build. Mater. 2019, 229, 116892. [Google Scholar] [CrossRef]
- Han, B.; Guan, X.; Ou, J. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors. Sens. Actuators A Phys. 2007, 135, 360–369. [Google Scholar] [CrossRef]
- Downey, A.; D’Alessandro, A.; Ubertini, F.; Laflamme, S.; Geiger, R. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with car-bon-based additives. Smart Mater. Struct. 2017, 26, 065008. [Google Scholar] [CrossRef] [Green Version]
- Meoni, A.; D’Alessandro, A.; Mancinelli, M.; Ubertini, F. A Multichannel Strain Measurement Technique for Nanomodified Smart Cement-Based Sensors in Reinforced Concrete Structures. Sensors 2021, 21, 5633. [Google Scholar] [CrossRef] [PubMed]
- Konsta-Gdoutos, M.S.; Aza, C.A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 2014, 53, 162–169. [Google Scholar] [CrossRef]
- Shifeng, H.; Dongyu, X.; Jun, C.; Ronghua, X.; Lingchao, L.; Xin, C. Smart Properties of Carbon Fiber Reinforced Cement-based Composites. J. Compos. Mater. 2007, 41, 125–131. [Google Scholar] [CrossRef]
- Hong, Y.; Li, Z.; Qiao, G.; Ou, J.; Cheng, W. Pressure sensitivity of multiscale carbon-admixtures–enhanced cement-based composites. Nanomater. Nanotechnol. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Chung, D.D.L. Damage evolution during freeze–thaw cycling of cement mortar, studied by electrical resistivity measurement. Cem. Concr. Res. 2002, 32, 1657–1661. [Google Scholar] [CrossRef]
- Nalon, G.H.; Ribeiro, J.C.L.; Pedroti, L.G.; de Araújo, E.N.D.; de Carvalho, J.M.F.; de Lima, G.E.S.; de Moura Guimarães, L. Residual piezoresistive properties of mortars containing carbon nanomaterials exposed to high temperatures. Cem. Concr. Compos. 2021, 121, 104104. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D. The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement. Carbon 2006, 44, 2130–2138. [Google Scholar] [CrossRef]
- Han, B.; Zhang, L.; Ou, J. Influence of water content on conductivity and piezoresistivity of cement-based material with both carbon fiber and carbon black. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010, 25, 147–151. [Google Scholar] [CrossRef]
- Siad, H.; Lachemi, M.; Sahmaran, M.; Mesbah, H.A.; Hossain, K.A. Advanced engineered cementitious composites with combined self-sensing and self-healing functionalities. Constr. Build. Mater. 2018, 176, 313–322. [Google Scholar] [CrossRef]
- Xiao, H.; Li, H.; Ou, J. Self-monitoring Properties of Concrete Columns with Embedded Cement-based Strain Sensors. J. Intell. Mater. Syst. Struct. 2011, 22, 191–200. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Luo, Z.; Long, G.; Vessalas, K.; Sheng, D. Structural response monitoring of concrete beam under flexural loading using smart carbon black/cement-based sensors. Smart Mater. Struct. 2020, 29, 065001. [Google Scholar] [CrossRef]
- Roopa, A.K.; Hunashyal, A.M.; Venkaraddiyavar, P.; Ganachari, S.V. Smart hybrid nano composite concrete embedded sen-sors for structural health monitoring. Mater. Today Proc. 2020, 27, 603–609. [Google Scholar] [CrossRef]
- Ding, S.; Ruan, Y.; Yu, X.; Han, B.; Ni, Y.-Q. Self-monitoring of smart concrete column incorporating CNT/NCB composite fillers modified cementitious sensors. Constr. Build. Mater. 2019, 201, 127–137. [Google Scholar] [CrossRef]
- Wu, S.; Dai, H.; Wang, W. Effect of CFRC layers on the electrical properties and failure mode of RC beams strengthened with CFRC composites. Smart Mater. Struct. 2007, 16, 2056–2062. [Google Scholar] [CrossRef]
- Howser, R.; Dhonde, H.B.; Mo, Y. Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading. Smart Mater. Struct. 2011, 20, 085031. [Google Scholar] [CrossRef]
- Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. Multifunctional cement composites strain and damage sensors applied on rein-forced concrete (RC) structural elements. Materials 2013, 6, 841–855. [Google Scholar] [CrossRef] [Green Version]
- Witarto, W.; Lu, L.; Roberts, R.H.; Mo, Y.; Lu, X. Shear-critical reinforced concrete columns under various loading rates. Front. Struct. Civ. Eng. 2014, 8, 362–372. [Google Scholar] [CrossRef]
- Cholker, A.K.; Tantray, M.A. Influence of Carbon Fibres on Strain Sensing and Structural Properties of RC Beams without Stirrups. Karbala Int. J. Mod. Sci. 2020, 6, 4. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Meoni, A.; Ubertini, F.; Materazzi, A.L. Strain measurement in a reinforced concrete beam using embedded smart concrete sensors. In Proceedings of the Italian Concrete Days, Milan, Italy, 13–16 June 2018; Springer: Cham, Switzerland, 2018; pp. 289–300. [Google Scholar]
- Castañeda-Saldarriaga, D.L.; Alvarez-Montoya, J.; Martínez-Tejada, V.; Sierra-Pérez, J. Toward Structural Health Monitoring of Civil Structures Based on Self-Sensing Concrete Nanocomposites: A Validation in a Reinforced-Concrete Beam. Int. J. Concr. Struct. Mater. 2021, 15, 1–18. [Google Scholar] [CrossRef]
Filler | Matrix | Electrode | Curing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ref. | Type | Concentration 2 | Dispersion 3 | Type 4 | w/c | Additive 5 | Type 6 | Nr | Spacing 7 | Type 8 | Duration |
(-) | (-) | (%) | (-) | (-) | (-) | (-) | (-) | (-) | (mm) | (-) | (d) |
[71] | CB | 15.00 | MS | C | 0.40 | WR + Df | CN | 4 | 8 | M; OD | 28;2 |
[72] | CB | 0.50; 1.00; 2.00 | MS | C | 0.35–0.45 | SP + SF | CN | 4 | 10 | S | 28 |
[73] | Hybrid (CNT + G + CF) | 0.50 | MS + S | M | 0.45 | CG | 2 | 10 | S | 28 | |
[74] | Hybrid (CNT + CB) | 6.00 | MS | C | 0.50 | FA + WR | SSG | 2 | 10 | S | 28 |
[75] | CF | 5.00 | MS | RC | 0.48 | SS | 4 | 200 | L | 28 | |
[76] | CF; SF | 0.70; 18.00 | MS | RC | 0.40–0.50 | FA + WR | CW | 4 | 120 | 28 | |
[77] | nano CF; CF | 2.00; 1.00 | US; O + S | C | 0.50 | ECW | 4 | 10 | M | 28 | |
[78] | nano CF | 0.70 | MS | M | 0.42 | WR + SF | CW | 4 | 5 | L; OD | 28; 1 |
[79] | CF | 1.50 | S | C | 0.38 | WR | ECW | 4 | M; AD | 28 | |
[53] | MWCNT | 1.50 | S | C | 0.45 | SP | SSM | 4 | 10 | L | 28 |
[62,80] | MWCNT | 1.50 | S | C | 0.45 | SP | SSM | 4 | 10 | L | 28 |
[54] | MWCNT | 0.10; 0.25; 0.50; 0.75 | S + ST; S + ST + OH/COOH | C | 0.40 | Df | CWM | 2 | 10 | L; OD | 28; 3 |
[81] | MWCNT | 0.80 | S + ST | M | 0.33 | CWM | 2 | S | 28 |
Sensor Dimensions | Installation | Prototype | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Bs 2 | Hs 2 | Ls 2 | Type 3 | Number 4 | Member | Bp 5 | Hp 5 | Lp 5 | Material | Loading condition |
(-) | (mm) | (mm) | (mm) | (-) | (-) | (-) | (mm) | (mm) | (mm) | (-) | (-) |
[71] | 40 | 30 | 50 | Embedded | 1 | Column | 100 | 100 | 300 | Concrete | Cyclic axial load |
[72] | 10 | 10 | 30 | Embedded | 1;2 | Beam | 40 | 40 | 160 | Cement paste | Monotonic bending Cyclic bending |
[73] | 50 | 20 | 50 | Embedded | 1 | Beam Column | 100 | 100 | 500 | Concrete | Monotonic bending Monotonic axial load |
[74] | 20 | 20 | 50 | Embedded | 1 | Column | 150 | 150 | 300 | Concrete | Monotonic axial load Cyclic axial load |
[75] | 200 | 30;60;90 | 3000 | Embedded | Beam | RC | Monotonic bending | ||||
[76] | 305 | 305 | 507 | Embedded | Column | RC | Cyclic lateral load | ||||
[77] | 20 200 | 20 7 | 80 80 | Attached | 18 8 | Beam | 200 | 300 | 3900 | RC | Cyclic bending |
[78] | 25.4 | 25.4 | 25.4 | Embedded | 6 | Column | 450 | 450 | 1600 | RC | Cyclic lateral load |
[79] | 125 | 78 | 350 | Embedded | 2 | Beam | 125 | 350 | 1500 | RC | Monotonic bending |
[53] | 50 | 50 | 50 | Embedded | 7 | Beam | 250 | 250 | 2000 | RC | Cyclic bending, Vibration |
[62,80] | 50 | 50 | 50 | Embedded | 7 | Beam | 250 | 250 | 2000 | RC | Vibration test, monotonic bending and environment action |
[54] | 50 | 50 | 50 | Mechanical | 1 | Beam | 600 | 245 | 4500 | RC | Vibration test |
[81] | 52 | 52 | 150 | Embedded | 1 | Beam | 130 | 160 | 650 | Reinforced mortar | Monotonic bending |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassese, P.; Rainieri, C.; Occhiuzzi, A. Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review. Appl. Sci. 2021, 11, 8530. https://doi.org/10.3390/app11188530
Cassese P, Rainieri C, Occhiuzzi A. Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review. Applied Sciences. 2021; 11(18):8530. https://doi.org/10.3390/app11188530
Chicago/Turabian StyleCassese, Paolino, Carlo Rainieri, and Antonio Occhiuzzi. 2021. "Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review" Applied Sciences 11, no. 18: 8530. https://doi.org/10.3390/app11188530
APA StyleCassese, P., Rainieri, C., & Occhiuzzi, A. (2021). Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review. Applied Sciences, 11(18), 8530. https://doi.org/10.3390/app11188530