Efficacy and Toxicity of VarroMed® Used for Controlling Varroa destructor Infestation in Different Seasons and Geographical Areas
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Summer/Autumn Trial
3.2. Winter Trial
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, D.L.; Trueman, J.W.H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 2000, 24, 165–189. [Google Scholar] [CrossRef]
- Noël, A.; Le Conte, Y.; Mondet, F. Varroa destructor: How does it harm Apis mellifera honey bees and what can be done about it? Emerg. Top. Life Sci. 2020, 4, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Mutinelli, F. Veterinary medicinal products to control Varroa destructor in honey bee colonies (Apis mellifera) and related EU legislation—An update. J. Apicult. Res. 2016, 55, 78–88. [Google Scholar] [CrossRef]
- Gregorc, A.; Alburaki, M.; Sampson, B.; Knight, P.R.; Adamczyk, J. Toxicity of selected acaricides to honey bees (Apis mellifera) and varroa (Varroa destructor (Anderson and Trueman) and their use in controlling Varroa within honey bee colonies. Insects 2018, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanov, S. Contaminants of bee products. Apidologie 2000, 37, 1–18. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Union 2010, 15, 1–72. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010R0037 (accessed on 19 June 2021).
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invert. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Büchler, R.; Uzunov, A.; Kovačić, M.; Prešern, J.; Pietropaoli, M.; Hatjina, F.; Pavlov, B.; Charistos, L.; Formato, G.; Galarza, E.; et al. Summer brood interruption as integrated management strategy for effective Varroa control in Europe. J. Apicult. Res. 2020, 59, 764–773. [Google Scholar] [CrossRef]
- Radetzki, T.; Reiter, M.; Negelein, B.; Fischermuhle, H. Oxalsaure zur Varroabekampfung [Oxalic acid for Varroa control]. Schweiz. Bienen-Ztg. 1994, 117, 263–267. [Google Scholar]
- Imdorf, A.; Charriere, J.-E.; Bachofen, B. Wann ist die Oxalsaure als Varroazid geeignet [When is oxalic acid suitable as varroacide?]. Schweiz. Bienen-Ztg. 1995, 7, 389–391. [Google Scholar]
- Mutinelli, F.; Baggio, A.; Capolongo, F.; Piro, R.; Prandin, L.; Biasion, L. A scientific note on oxalic acid by topical application for the control of varroosis. Apidologie 1997, 28, 461–462. [Google Scholar] [CrossRef]
- Nanetti, A. Oxalic acid for mite control—Results and review. In Coordination in Europe of Research on Integrated Varroa Mites in Honey Bee Colonies; Commission of the European Communities: Gent, Belgium, 1999; pp. 9–15. Available online: http://varroa.fr/wp-content/uploads/2017/08/Fries-I.-et-al-1999.-Coordination-in-europe-of-integrated-control-of-varroa-mites-in-honey-bees-colonies.pdf (accessed on 19 June 2021).
- Rademacher, E.; Harz, M. Oxalic acid for the control of varroosis in honey bee colonies—A review. Apidologie 2006, 37, 98–120. [Google Scholar] [CrossRef] [Green Version]
- Imdorf, A.; Gerig, L. Lutte intégrée contre varroa: Acide formique. J. Suisse Apicult. 1988, 85, 311–320. [Google Scholar]
- Bolli, H.K.; Bogdanov, S.; Imdorf, A.; Fluri, P. Zur Wirkungsweise von Ameisensäure bei Varroa jacobsoni Oud und der Honigbiene (Apis mellifera L). [Title in English: Action of formic acid on Varroa jacobsoni Oud and the honeybee (Apis mellifera L). Apidologie 1993, 24, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Pietropaoli, M.; Formato, G. Liquid formic acid 60% to control varroa mites (Varroa destructor) in honey bee colonies (Apis mellifera): Protocol evaluation. J. Apicult. Res. 2018, 57, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Girisgin, A.O.; Aydin, L. Efficacies of formic, oxalic and lactic acids against Varroa destructor in naturally infested honeybee (Apis mellifera L.) colonies in Tureky. KAFKAS Univ. Vet. Fak. Derg. 2010, 16, 941–945. [Google Scholar]
- Rademacher, E.; Harz, M.; Schneider, S. The development of HopGuard® as a winter treatment against Varroa destructor in colonies of Apis mellifera. Apidologie 2015, 46, 748–759. [Google Scholar] [CrossRef]
- Imdorf, A.; Kilchenmann, V.; Maquelin, C.; Bogdanov, S. Optimierung der Anwendung von ’Apilife VAR’ zur Bekämpfung von Varroa jacobsoni Oud. in Bienenvölkern. Apidologie 1994, 25, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Imdorf, A.; Bogdanov, S.; Ibáñez Ochoa, R.; Calderone, N.W. Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie 1999, 30, 209–228. [Google Scholar] [CrossRef] [Green Version]
- Floris, I.; Satta, A.; Cabras, P.; Garau, V.L.; Angioni, A. Comparison between two thymol formulations in the control of Varroa destructor: Effectiveness, persistence, and residues. J. Econ. Entomol. 2004, 97, 187–191. [Google Scholar] [CrossRef]
- Marinelli, E.; De Santis, L.; De Pace, F.M.; Dell’Aira, E.; Saccares, S.; Nisi, S.; Formato, G. Impiego del timolo e dell’acido formico per il controllo della varroatosi nel Lazio [Use of thymol and formic acid to control varroatosis in Latium region]. Apitalia 2007, 1, 1–4. [Google Scholar]
- Damiani, N.; Gende, L.B.; Bailac, P.; Marcangeli, J.A.; Eguaras, M.J. Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae). Parasitol. Res. 2009, 106, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, V.; Moharramipour, S.; Tahmasbi, G. Biological activity of some plant essential oils against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae). Exp. App. Acarol. 2011, 55, 147–154. [Google Scholar] [CrossRef]
- Sabahi, Q.; Morfin, N.; Emsen, B.; Gashout, H.A.; Kelly, P.G.; Otto, S.; Rod Merrill, A.; Guzman-Novoa, E. Evaluation of dry and wet formulations of oxalic acid, thymol, and oregano oil for Varroa mite (Acari: Varroidae) control in honey bee (Hymenoptera: Apidae) Colonies. J. Econ. Entomol. 2020, 113, 2588–2594. [Google Scholar] [CrossRef]
- Giacomelli, A.; Pietropaoli, M.; Carvelli, A.; Iacoponi, F.; Formato, G. Combination of thymol treatment (Apiguard®) and caging the queen technique to fight Varroa destructor. Apidologie 2016, 47, 606–616. [Google Scholar] [CrossRef] [Green Version]
- COLOSS. Available online: https://coloss.org/projects/varroa/ (accessed on 3 June 2021).
- EMA. European Medicines Agency, Committee for Medicinal Products for Veterinary Use. Guidelines on Veterinary Medicinal Products Controlling Varroa destructor Parasitosis in Bees. EMA/CVMP/459883/2008. 2008. Available online: https://www.ema.europa.eu/en/veterinary-medicinal-products-controlling-varroa-destructor-parasitosis-bees (accessed on 19 June 2021).
- Delaplane, K.S.; van der Steen, J.; Guzman-Novoa, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apicult. Res. 2013, 52, 1–12. [Google Scholar] [CrossRef]
- Pietropaoli, M.; Giacomelli, A.; Macrì, S.; Volterrani, A.; Pizzariello, M.; Formato, G. Considerazioni sui risultati nel Centro Italia dell’impiego di acido formico in gel (MAQS™), nella lotta alla varroa, in condizioni di presenza di covata e di melario. Apimondia Italia 2012, 1/2, 20–23. [Google Scholar]
- Dietemann, V.; Nazzi, F.; Martin, S.J.; Anderson, D.L.; Locke, B.; Delaplane, K.S.; Wauquiez, Q.; Tannahill, C.; Frey, E.; Ziegelmann, B.; et al. Standard methods for varroa research. J. Apicul. Res. 2013, 52, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Addinsoft SARL. XLSTAT-Software User’s Manual, version 10; Addinsoft: Paris, France, 2010. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons among means. J. Am. Stat. Assoc. 1961, 56, 52–64. [Google Scholar] [CrossRef]
- Beyer, M.; Junk, J.; Eickermann, M.; Clermont, A.; Kraus, F.; Georges, C.; Reichart, A.; Hoffmann, L. Winter honey bee colony losses, Varroa destructor control strategies, and the role of weather conditions: Results from a survey among beekeepers. Res. Vet. Sci. 2018, 118, 52–60. [Google Scholar] [CrossRef]
- Guzmán-Novoa, E.; Eccles, L.; Calvete, Y.; Mcgowan, J.; Kelly, P.G.; Correa-Benítez, A. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 2010, 41, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Haber, A.I.; Steinhauer, N.A.; van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 2019, 112, 1509–1525. [Google Scholar] [CrossRef]
- Oberreiter, H.; Brodschneider, R. Austrian COLOSS Survey of honey bee colony winter losses 2018/19 and Analysis of Hive Management Practices. Diversity 2020, 12, 99. [Google Scholar] [CrossRef] [Green Version]
- Vercelli, M.; Croce, L.; Mancuso, T. An economic approach to assess the annual stock in beekeeping farms: The honey bee colony inventory tool. Sustainability 2020, 12, 9258. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Sušec, P. Efficacy of varroacidal food additive appliance during summer treatment of honeybee colonies (Apis mellifera). Vet. Arh. 2019, 89, 87–96. [Google Scholar] [CrossRef]
- EMA. European Medicines Agency, EPAR Summary for the Public. 2017. Available online: https://www.ema.europa.eu/ (accessed on 19 June 2021).
- Higes, M.; Meana, A.; Suárez, M.; Llorente, J. Negative long-term effects on bee colonies treated with oxalic acid against Varroa jacobsoni Oud. Apidologie 1999, 30, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Martin-Hernandez, R.; Higes, M.; Perez, J.L.; Nozal, M.J.; Gomez, L.; Meana, A. Short term negative effect of oxalic acid in Apis mellifera iberiensis. Span J. Agric. Res. 2007, 5, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Gregorc, A.; Škerl, M.I. Toxicological and immunohistochemical testing of honeybees after oxalic acid and rotenone treatments. Apidologie 2007, 38, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Keyhani, J.; Keyhani, E. EPR study of the effect of formate on cytochrome c oxidase (1980). Biochem. Biophys. Res. Commun. 1980, 92, 327–333. [Google Scholar] [CrossRef]
- Song, C.; Scharf, M.E. Formic acid: A neurologically active, hydrolyzed metabolite of insecticidal formate esters. Pestic. Biochem. Physiol. 2008, 92, 77–82. [Google Scholar] [CrossRef]
- Underwood, R.M.; Currie, R. The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor (Acari: Varroidae), a parasite of Apis mellifera (Hymenoptera: Apidae). Exp. App. Acarol. 2003, 29, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Fries, I. Treatment of sealed honey bee brood with formic acid for control of Varroa jacobsoni. Am. Bee J. 1991, 131, 313–314. [Google Scholar]
- Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity USA. Apidologie 2010, 41, 312–331. [Google Scholar] [CrossRef] [Green Version]
- Pietropaoli, M.; Tlak Gajger, I.; Costa, C.; Gerula, D.; Wilde, J.; Adjlane, N.; Aldea-Sánchez, P.; Smodiš Škerl, M.; Bubnič, J.; Formato, G. Evaluation of Two Commonly Used Field Tests to Assess Varroa destructor Infestation on Honey Bee (Apis mellifera) Colonies. Appl. Sci. 2021, 11, 4458. [Google Scholar] [CrossRef]
- Rivera-Gomis, J.; Bubnič, J.; Ribarits, A.; Moosbeckhofer, R.; Alber, O.; Kozmus, P.; Jannoni-Sebastianini, R.; Haefeker, W.; Köglberger, H.; Smodiš Škerl, M.I.; et al. Good farming practices in apiculture. Rev. Sci. Tech. 2019, 38, 879–890. [Google Scholar] [CrossRef] [PubMed]
Location | Protocol | Apiary Code | Number of Treated Colonies/Control Colonies | Treatment Period |
---|---|---|---|---|
Zutendaal, Belgium | Summer/autumn (×5) 1 | BELGIUM | 10/10 | 23.9.–3.11.2018 |
Rome, Italy | Summer/autumn (×5) | ITALY_IZSLT | 10/10 | 6.8.–20.9.2018 |
Brdo pri Kranju, Slovenia | Summer/autumn (×5) | SLOVENIA | 8/7 3 | 13.9.–15.10.2018 |
Karlovac, Croatia | Summer/autumn (×3) 2 | CROATIA | 10/10 | 20.7.–2.8.2018 |
Levico Terme, Italy | Winter | ITALY_FEM | 10/10 | 22.11.–6.12.2018 |
Rome, Italy | Winter | ITALY_IZSLT | 10/10 | |
Bassano del Grappa, Italy | Winter | ITALY_IZSVE | 10/10 | 17.11.–1.12.2018 |
Karlovac, Croatia | Winter | CROATIA | 10/10 | 29.1.–20.2.2018 |
Statistics | VARROMED ×5 (BELGIUM) | VARROMED ×5 (ITALY_IZSLT) | VARROMED ×5 (SLOVENIA) | VARROMED ×3 (CROATIA) | CONTROL (BELGIUM) | CONTROL (ITALY_IZSLT) | CONTROL (SLOVENIA) | CONTROL (CROATIA) |
---|---|---|---|---|---|---|---|---|
Minimum | 81.5 | 73.9 | 83.4 | 13.3 | 6.8 | 28.2 | 21.4 | 0.4 |
Maximum | 100 | 99.2 | 93.8 | 80.7 | 32.8 | 75.3 | 69.2 | 1.5 |
1st Quartile | 83.6 | 82.9 | 84.9 | 76.1 | 9.8 | 32.1 | 28.8 | 0.5 |
Median | 89.2 | 89.7 | 88.6 | 77.3 | 12.9 | 39.8 | 46.7 | 0.6 |
3rd Quartile | 94.1 | 98.2 | 91.3 | 78.9 | 13.5 | 53.7 | 48.7 | 0.7 |
Mean | 89.4 | 88.2 | 88.3 | 71.2 | 15.3 | 44.6 | 42.7 | 0.7 |
Variance (n−1) | 0.5 | 0.9 | 0.2 | 4.2 | 0.9 | 2.7 | 3.2 | 0 |
Standard deviation (n−1) | 7.2 | 9.3 | 4.0 | 20.4 | 9.7 | 16.3 | 17.9 | 0.4 |
Statistics | VARROMED ×5 (BELGIUM) | VARROMED ×5 (ITALY_IZSLT) | VARROMED ×5 (SLOVENIA) | VARROMED ×3 (CROATIA) | CONTROL (BELGIUM) | CONTROL (ITALY_IZSLT) | CONTROL (SLOVENIA) | CONTROL (CROATIA) |
---|---|---|---|---|---|---|---|---|
Minimum | 7.5 | 11.5 | 15.3 | 69.7 | 92.4 | 56.4 | 10.9 | 53.3 |
Maximum | 122.2 | 219.4 | 63.2 | 94.6 | 242.7 | 448.1 | 109.2 | 111.7 |
1st Quartile | 23.1 | 55.2 | 18.5 | 76.5 | 152.3 | 61.9 | 23.7 | 61.2 |
Median | 44.0 | 90.1 | 20.4 | 80.2 | 180.0 | 117.5 | 28.8 | 70.8 |
3rd Quartile | 63.7 | 121.2 | 38.4 | 85.2 | 208.2 | 126.4 | .48.5 | 78.1 |
Mean | 49.6 | 94.2 | 30.4 | 80.9 | 179.7 | 137.8 | 42.5 | 72.1 |
Variance (n−1) | 15.3 | 37.0 | 3.5 | 0.5 | 25.1 | 147.1 | 12.7 | 2.9 |
Standard deviation (n−1) | 39.1 | 60.8 | 18.8 | 7.3 | 50.1 | 121.3 | 35.6 | 16.9 |
Statistics | VARROMED ×5 (ITALY_IZSLT) | VARROMED ×5 (SLOVENIA) | VARROMED ×3 (CROATIA) | CONTROL (ITALY_IZSLT) | CONTROL (SLOVENIA) | CONTROL (CROATIA) |
---|---|---|---|---|---|---|
Minimum | 1.5 | 1.3 | 34.0 | 42.6 | 0 | 19.0 |
Maximum | 170.5 | 23.8 | 71.4 | 450.0 | 29.1 | 36.7 |
1st Quartile | 40.1 | 4.5 | 39.5 | 76.8 | 3.0 | 23.3 |
Median | 75.9 | 8.6 | 50.4 | 115.6 | 12.1 | 26.5 |
3rd Quartile | 117.6 | 16.2 | 62.8 | 173.3 | 24.7 | 28.8 |
Mean | 81.1 | 10.7 | 51.1 | 152.3 | 13.7 | 26.4 |
Variance (n−1) | 33.7 | 0.8 | 1.9 | 154.5 | 1.7 | 0.3 |
Standard deviation (n−1) | 58.0 | 8.9 | 13.8 | 124.3 | 13.0 | 5.5 |
Statistics | VARROMED (ITALY_FEM) | VARROMED (ITALY_IZSLT) | VARROMED (ITALY_IZSVE) | VARROMED (CROATIA) | CONTROL (ITALY_FEM) | CONTROL (ITALY_IZSLT) | CONTROL (ITALY_IZSVE) | CONTROL (CROATIA) |
---|---|---|---|---|---|---|---|---|
Minimum | 73.1 | 87.8 | 64.8 | 42.9 | 1.1 | 0.6 | 1.7 | 0 |
Maximum | 100 | 98.9 | 98.7 | 87.3 | 19.6 | 23.8 | 33.3 | 35.7 |
1st Quartile | 79.3 | 93.8 | 84.6 | 64.6 | 5.4 | 2.8 | 2.4 | 3.4 |
Median | 94.6 | 97.0 | 93.7 | 74.1 | 6.6 | 6.5 | 14.4 | 16.0 |
3rd Quartile | 99.8 | 97.6 | 96.0 | 82.3 | 10.2 | 11.8 | 23.3 | 20.3 |
Mean | 89.9 | 95.6 | 89.7 | 71.8 | 8.3 | 8.6 | 15.0 | 14.8 |
Variance (n−1) | 1.2 | 0.1 | 1.1 | 1.9 | 0.3 | 0.5 | 1.6 | 1.5 |
Standard deviation (n−1) | 11.1 | 3.5 | 10.5 | 13.7 | 5.3 | 7.3 | 12.7 | 12.0 |
Statistics | VARROMED (ITALY_FEM) | VARROMED (ITALY_IZSLT) | VARROMED (ITALY_IZSVE) | VARROMED (CROATIA) | CONTROL (ITALY_FEM) | CONTROL (ITALY_IZSLT) | CONTROL (ITALY_IZSVE) | CONTROL (CROATIA) |
---|---|---|---|---|---|---|---|---|
Minimum | 70.6 | 62.4 | 84.6 | 81.1 | 71.6 | 80.6 | 91.3 | 85.7 |
Maximum | 199.6 | 95.4 | 120.7 | 100 | 187.6 | 93.8 | 112.5 | 100 |
1st Quartile | 98.7 | 88.9 | 97.3 | 85.7 | 81.9 | 83.3 | 95.7 | 99.0 |
Median | 122.9 | 92.2 | 101.3 | 88.3 | 93.4 | 90.3 | 98.2 | 100 |
3rd Quartile | 135.6 | 94.2 | 104.2 | 99.5 | 124.1 | 90.9 | 105.9 | 100 |
Mean | 120.2 | 88.1 | 101.9 | 91.1 | 106.6 | 88.3 | 100.3 | 98.0 |
Variance (n−1) | 13.1 | 1.1 | 1.0 | 0.6 | 13.4 | 0.2 | 0.5 | 0.2 |
Standard deviation (n−1) | 36.2 | 10.4 | 10.2 | 7.6 | 36.6 | 4.8 | 7.0 | 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smodiš Škerl, M.I.; Rivera-Gomis, J.; Tlak Gajger, I.; Bubnič, J.; Talakić, G.; Formato, G.; Baggio, A.; Mutinelli, F.; Tollenaers, W.; Laget, D.; et al. Efficacy and Toxicity of VarroMed® Used for Controlling Varroa destructor Infestation in Different Seasons and Geographical Areas. Appl. Sci. 2021, 11, 8564. https://doi.org/10.3390/app11188564
Smodiš Škerl MI, Rivera-Gomis J, Tlak Gajger I, Bubnič J, Talakić G, Formato G, Baggio A, Mutinelli F, Tollenaers W, Laget D, et al. Efficacy and Toxicity of VarroMed® Used for Controlling Varroa destructor Infestation in Different Seasons and Geographical Areas. Applied Sciences. 2021; 11(18):8564. https://doi.org/10.3390/app11188564
Chicago/Turabian StyleSmodiš Škerl, Maja Ivana, Jorge Rivera-Gomis, Ivana Tlak Gajger, Jernej Bubnič, Gabriela Talakić, Giovanni Formato, Alessandra Baggio, Franco Mutinelli, Wim Tollenaers, Dries Laget, and et al. 2021. "Efficacy and Toxicity of VarroMed® Used for Controlling Varroa destructor Infestation in Different Seasons and Geographical Areas" Applied Sciences 11, no. 18: 8564. https://doi.org/10.3390/app11188564
APA StyleSmodiš Škerl, M. I., Rivera-Gomis, J., Tlak Gajger, I., Bubnič, J., Talakić, G., Formato, G., Baggio, A., Mutinelli, F., Tollenaers, W., Laget, D., Malagnini, V., Zanotelli, L., & Pietropaoli, M. (2021). Efficacy and Toxicity of VarroMed® Used for Controlling Varroa destructor Infestation in Different Seasons and Geographical Areas. Applied Sciences, 11(18), 8564. https://doi.org/10.3390/app11188564