A Hybrid CNN-Based Review Helpfulness Filtering Model for Improving E-Commerce Recommendation Service
Abstract
:1. Introduction
- This study first proposes the RHRM framework that has filtered the review helpfulness and reflected upon personalized recommendation services. It can enhance the recommendation performance because it reflects the purchasing behavior of the users who consider reviews when purchasing items.
- This study has built a review helpfulness classification model using the combined CNN and BiLSTM that demonstrates excellent performance in the Natural Language Processing (NLP) study. We confirm the advantages of the combined CNN–BiLSTM hybrid model in semantic representation extraction through various experiments.
- This study has conducted several experiments with the Amazon dataset. The results indicate that reflecting review helpfulness information can enhance the prediction performance of personalized recommendation services, increase user satisfaction, and raise confidence in the company.
2. Related Work
2.1. Collaborative Filtering
2.2. Review-Based Recommender System
2.3. Review Text Classification with Deep Learning Approaches
3. RHRM Framework
3.1. Phase 1: Review Semantics Extractor
3.2. Phase 2: User Profile Producer
3.3. Phase 3: Recommendation Generator
4. Experiments
4.1. Dataset Overview
4.2. Evaluation Protocols
4.3. Parameter Settings
4.4. Experimental Result
4.4.1. Review Helpfulness Classification Performance Comparison
4.4.2. Prediction Performance Comparison Based on Helpful Review Filtering
5. Conclusions
5.1. Discussion
5.2. Theoretical Contributions and Practical Implications
5.3. Limitations and Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Wu, D.; Mao, M.; Wang, W.; Zhang, G. Recommender system application developments: A survey. Decis. Support Syst. 2015, 74, 12–32. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl.-Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Das, A.S.; Datar, M.; Garg, A.; Rajaram, S. Google news personalization: Scalable online collaborative filtering. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 271–280. [Google Scholar]
- Linden, G.; Smith, B.; York, J. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 2003, 7, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.; Lanning, S. The netflix prize. In Proceedings of the KDD Cup and Workshop, San Jose, CA, USA, 12 August 2007; p. 35. [Google Scholar]
- Lee, D.; Hosanagar, K. How do recommender systems affect sales diversity? A cross-category investigation via randomized field experiment. Inf. Syst. Res. 2019, 30, 239–259. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Choi, I.; Li, Q. Customer satisfaction of recommender system: Examining accuracy and diversity in several types of recommendation approaches. Sustainability 2021, 13, 6165. [Google Scholar] [CrossRef]
- Kim, H.K.; Ryu, Y.U.; Cho, Y.; Kim, J.K. Customer-driven content recommendation over a network of customers. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2011, 42, 48–56. [Google Scholar] [CrossRef]
- Choi, K.; Yoo, D.; Kim, G.; Suh, Y. A hybrid online-product recommendation system: Combining implicit rating-based collaborative filtering and sequential pattern analysis. Electr. Commer. Res. Appl. 2012, 11, 309–317. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, H.K.; Choi, I.Y.; Kim, J.K. A literature review and classification of recommender systems research. Expert Syst. Appl. 2012, 39, 10059–10072. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, J.K.; Ryu, Y.U. Personalized recommendation over a customer network for ubiquitous shopping. IEEE Trans. Serv. Comput. 2009, 2, 140–151. [Google Scholar] [CrossRef]
- Ricci, F.; Rokach, L.; Shapira, B. Introduction to recommender systems handbook. In Recommender Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–35. [Google Scholar]
- Li, X.; Wang, M.; Liang, T.-P. A multi-theoretical kernel-based approach to social network-based recommendation. Decis. Support Syst. 2014, 65, 95–104. [Google Scholar] [CrossRef]
- Qiu, L.; Gao, S.; Cheng, W.; Guo, J. Aspect-based latent factor model by integrating ratings and reviews for recommender system. Knowl. -Based Syst. 2016, 110, 233–243. [Google Scholar] [CrossRef]
- Moore, S.G. Attitude predictability and helpfulness in online reviews: The role of explained actions and reactions. J. Consum. Res. 2015, 42, 30–44. [Google Scholar] [CrossRef]
- Srifi, M.; Oussous, A.; Ait Lahcen, A.; Mouline, S. Recommender systems based on collaborative filtering using review texts—A survey. Information 2020, 11, 317. [Google Scholar] [CrossRef]
- Ge, S.; Qi, T.; Wu, C.; Wu, F.; Xie, X.; Huang, Y. Helpfulness-aware review based neural recommendation. CCF Trans. Pervasive Comput. Interact. 2019, 1, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.-H.; Chen, Y.-L.; Chou, H.-L. Opinion mining from online hotel reviews–a text summarization approach. Inf. Process. Manag. 2017, 53, 436–449. [Google Scholar] [CrossRef]
- Kaushik, K.; Mishra, R.; Rana, N.P.; Dwivedi, Y.K. Exploring reviews and review sequences on e-commerce platform: A study of helpful reviews on Amazon. in. J. Retail. Consum. Serv. 2018, 45, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Castelli, M.; Manzoni, L.; Vanneschi, L.; Popovič, A. An expert system for extracting knowledge from customers’ reviews: The case of amazon. com, inc. Expert Syst. Appl. 2017, 84, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Na, H.; Nam, K. Application of diversity of recommender system according to user preference change. J. Intell. Inf. Syst. 2020, 26, 67–86. [Google Scholar]
- Paradarami, T.K.; Bastian, N.D.; Wightman, J.L. A hybrid recommender system using artificial neural networks. Expert Syst. Appl. 2017, 83, 300–313. [Google Scholar] [CrossRef]
- Kim, H.K.; Oh, H.Y.; Gu, J.C.; Kim, J.K. Commenders: A recommendation procedure for online book communities. Electron. Commer. Res. Appl. 2011, 10, 501–509. [Google Scholar] [CrossRef]
- Lee, Y.; Won, H.; Shim, J.; Ahn, H. A hybrid collaborative filtering-based product recommender system using search keywords. J. Intell. Inf. Syst. 2020, 26, 151–166. [Google Scholar]
- Su, X.; Khoshgoftaar, T.M. A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 2009, 1–19. [Google Scholar] [CrossRef]
- Al-Bashiri, H.; Abdulgabber, M.A.; Romli, A.; Kahtan, H. An improved memory-based collaborative filtering method based on the TOPSIS technique. PLoS ONE 2018, 13, e0204434. [Google Scholar] [CrossRef]
- Elahi, M.; Ricci, F.; Rubens, N. A survey of active learning in collaborative filtering recommender systems. Comput. Sci. Rev. 2016, 20, 29–50. [Google Scholar] [CrossRef]
- Breese, J.S.; Heckerman, D.; Kadie, C. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, USA, 24–26 July 1998; pp. 43–52. [Google Scholar]
- Isinkaye, F.O.; Folajimi, Y.O.; Ojokoh, B.A. Recommendation systems: Principles, methods and evaluation. Egypt. Inform. J. 2015, 16, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Bang, H.; Lee, H.; Lee, J.-H. TV Program recommender system using viewing time patterns. J. Korean Inst. Intell. Syst. 2015, 25, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Guy, I.; Mejer, A.; Nus, A.; Raiber, F. Extracting and ranking travel tips from user-generated reviews. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 987–996. [Google Scholar]
- Leung, C.W.; Chan, S.C.; Chung, F.-l. Integrating collaborative filtering and sentiment analysis: A rating inference approach. In Proceedings of the ECAI 2006 Workshop on Recommender Systems, Riva del Garda, Italy, 28 August–1 September 2006; pp. 62–66. [Google Scholar]
- García-Cumbreras, M.Á.; Montejo-Ráez, A.; Díaz-Galiano, M.C. Pessimists and optimists: Improving collaborative filtering through sentiment analysis. Expert Syst. Appl. 2013, 40, 6758–6765. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D.; Lai, J. urCF: User review enhanced collaborative filtering. In Proceedings of the 20th Americas Conference on Information Systems, Savannah, GA, USA, 7–9 August 2014; pp. 1–14. [Google Scholar]
- Zhou, L.; Chaovalit, P. Ontology-supported polarity mining. J. Am. Soc. Inf. Sci. Technol. 2008, 59, 98–110. [Google Scholar] [CrossRef]
- Jeon, B.; Ahn, H. A collaborative filtering system combined with users’ review mining: Application to the recommendation of smartphone apps. J. Intell. Inf. Syst. 2015, 21, 1–18. [Google Scholar]
- Hyun, J.; Ryu, S.; Lee, S.-Y.T. How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores. J. Intell. Inf. Syst. 2019, 25, 219–239. [Google Scholar]
- Cheng, Z.; Ding, Y.; Zhu, L.; Kankanhalli, M. Aspect-aware latent factor model: Rating prediction with ratings and reviews. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 639–648. [Google Scholar]
- Gan, C.; Feng, Q.; Zhang, Z. Scalable multi-channel dilated CNN–BiLSTM model with attention mechanism for Chinese textual sentiment analysis. Future Gener. Comput. Syst. 2021, 118, 297–309. [Google Scholar] [CrossRef]
- Deng, J.; Cheng, L.; Wang, Z. Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification. Comput. Speech Lang. 2021, 68, 101182. [Google Scholar] [CrossRef]
- Stojanovski, D.; Strezoski, G.; Madjarov, G.; Dimitrovski, I.; Chorbev, I. Deep neural network architecture for sentiment analysis and emotion identification of Twitter messages. Multimed. Tools Appl. 2018, 77, 32213–32242. [Google Scholar] [CrossRef]
- Song, Y.; Hu, Q.V.; He, L. P-CNN: Enhancing text matching with positional convolutional neural network. Knowl.-Based Syst. 2019, 169, 67–79. [Google Scholar] [CrossRef]
- Abdi, A.; Shamsuddin, S.M.; Hasan, S.; Piran, J. Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion. Inf. Process. Manag. 2019, 56, 1245–1259. [Google Scholar] [CrossRef]
- Rao, G.; Huang, W.; Feng, Z.; Cong, Q. LSTM with sentence representations for document-level sentiment classification. Neurocomputing 2018, 308, 49–57. [Google Scholar] [CrossRef]
- Hassan, A.; Mahmood, A. Efficient deep learning model for text classification based on recurrent and convolutional layers. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1108–1113. [Google Scholar]
- Hassan, A.; Mahmood, A. Convolutional recurrent deep learning model for sentence classification. IEEE Access 2018, 6, 13949–13957. [Google Scholar] [CrossRef]
- Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 2019, 337, 325–338. [Google Scholar] [CrossRef]
- Batbaatar, E.; Li, M.; Ryu, K.H. Semantic-emotion neural network for emotion recognition from text. IEEE Access 2019, 7, 111866–111878. [Google Scholar] [CrossRef]
- Zheng, J.; Zheng, L. A hybrid bidirectional recurrent convolutional neural network attention-based model for text classification. IEEE Access 2019, 7, 106673–106685. [Google Scholar] [CrossRef]
- Liu, Z.-x.; Zhang, D.-g.; Luo, G.-z.; Lian, M.; Liu, B. A new method of emotional analysis based on CNN–BiLSTM hybrid neural network. Clust. Comput. 2020, 23, 2901–2913. [Google Scholar] [CrossRef]
- Rai, A.; Shrivastava, A.; Jana, K.C. A CNN-BiLSTM based deep learning model for mid-term solar radiation prediction. Int. Trans. Electr. Energy Syst. 2020, 31, e12664. [Google Scholar] [CrossRef]
- Jang, B.; Kim, M.; Harerimana, G.; Kang, S.-u.; Kim, J.W. Bi-LSTM model to increase accuracy in text classification: Combining Word2vec CNN and attention mechanism. Appl. Sci. 2020, 10, 5841. [Google Scholar] [CrossRef]
- Rhanoui, M.; Mikram, M.; Yousfi, S.; Barzali, S. A CNN-BiLSTM model for document-level sentiment analysis. Mach. Learn. Knowl. Extr. 2019, 1, 832–847. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Zhang, X.; Wang, H. A review semantics based model for rating prediction. IEEE Access 2019, 8, 4714–4723. [Google Scholar] [CrossRef]
- Mitra, S.; Jenamani, M. Helpfulness of online consumer reviews: A multi-perspective approach. Inf. Process. Manag. 2021, 58, 102538. [Google Scholar] [CrossRef]
- Chen, T.; Xu, R.; He, Y.; Wang, X. Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Syst. Appl. 2017, 72, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y. Convolutional neural networks for sentence classification. In Proceedings of the EMNLP, Doha, Qatar, 25–29 October 2014. [Google Scholar]
- Ekstrand, M.D.; Riedl, J.T.; Konstan, J.A. Collaborative Filtering Recommender Systems; Now Publishers Inc.: Norwell, MA, USA, 2011. [Google Scholar]
- Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 2004, 22, 5–53. [Google Scholar] [CrossRef]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.-S. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [Google Scholar]
- Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv. (CSUR) 2019, 52, 1–38. [Google Scholar] [CrossRef] [Green Version]
- He, R.; McAuley, J. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 507–517. [Google Scholar]
- McAuley, J.; Targett, C.; Shi, Q.; Van Den Hengel, A. Image-based recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015; pp. 43–52. [Google Scholar]
- Liu, Y.; Huang, X.; An, A.; Yu, X. Modeling and predicting the helpfulness of online reviews. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 443–452. [Google Scholar]
- Park, S.; Woo, J. Gender classification using sentiment analysis and deep learning in a health web forum. Appl. Sci. 2019, 9, 1249. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Song, J.; Jeong, O. Social media contents based sentiment analysis and prediction system. Expert Syst. Appl. 2018, 105, 102–111. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Yang, L.; Li, Y.; Wang, J.; Sherratt, R.S. Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access 2020, 8, 23522–23530. [Google Scholar] [CrossRef]
- Saumya, S.; Singh, J.P. Detection of spam reviews: A sentiment analysis approach. CSI Trans. ICT 2018, 6, 137–148. [Google Scholar] [CrossRef]
Item Category | Item Name | Number of Reviews |
---|---|---|
Automotive | THISWORX Car Vacuum Cleaner | 170,864 |
Sports and Outdoors | Iron Flask Sports Water Bottle | 68,956 |
Pet Supplies | Amazon Basics Dog and Puppy Pads | 125,848 |
Electronics | Echo Dot (3rd Gen) | 895,176 |
Home and Kitchen | Mellanni Queen Sheet Set | 241,804 |
Attribute Name | Value |
---|---|
Reviewer ID | A2S166WSCFIFP5 |
Item ID | 000100039X |
Reviewer name | Adam |
Number of helpful votes | 10 |
Total number of votes | 25 |
Review text | I evidently misread the writeup, I thought it was a hardback. It was a cheap paperback. I got it as a present so I couldn’t send it back, but I’m very disappointed for the cost! |
Rating | 3 |
Summary headline | Not Bad! |
Review time | 2012-10-10 |
Dataset | Period | User | Item | Rating and Reviews |
---|---|---|---|---|
DS1 | May 1996–December 2011 | 281,661 | 223,452 | 2,757,812 |
DS2 | January 2012–July 2014 | 536,128 | 338,621 | 6,114,683 |
Predicted Class | Helpful | Unhelpful |
---|---|---|
Actual Class | ||
Helpful | TP | FN |
Unhelpful | FP | TN |
Vocabulary Size | Review Length (max/mean) | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|---|
20,000 | 2703 | 81.88 ± 0.44 | 81.44 ± 0.39 | 82.25 ± 0.41 | 81.84 ± 0.40 |
110 | 81.02 ± 0.40 | 80.13 ± 0.38 | 82.96 ± 0.36 | 81.52 ± 0.37 | |
40,000 | 2795 | 84.42 ± 0.39 | 83.57 ± 0.32 | 85.43 ± 0.34 | 84.48 ± 0.33 |
113 | 83.88 ± 0.32 | 82.92 ± 0.38 | 81.65 ± 0.35 | 82.28 ± 0.36 | |
60,000 | 2815 | 82.26 ± 0.24 | 83.25 ± 0.29 | 81.95 ± 0.31 | 82.59 ± 0.30 |
114 | 82.10 ± 0.41 | 82.71 ± 0.38 | 81.65 ± 0.35 | 82.17 ± 0.36 | |
80,000 | 2817 | 86.14 ± 0.35 | 85.54 ± 0.33 | 88.73 ± 0.34 | 87.10 ± 0.33 |
115 | 82.18 ± 0.31 | 81.73 ± 0.29 | 84.39 ± 0.39 | 83.03 ± 0.35 | |
10,4702 (Maximum) | 2837 | 83.19 ± 0.25 | 84.56 ± 0.34 | 80.15 ± 0.31 | 82.29 ± 0.32 |
115 | 82.26 ± 0.41 | 82.95 ± 0.39 | 84.32 ± 0.33 | 83.62 ± 0.36 |
Method | Metrics Factor | Mean | Standard Deviation | t-Statistics | p-Value | |
---|---|---|---|---|---|---|
UBCF | MAE | Existing | 0.716 | 0.435 | 32.007 | 0.000 |
Proposal | 0.617 | 0.355 | ||||
RMSE | Existing | 0.870 | 0.498 | 39.388 | 0.000 | |
Proposal | 0.732 | 0.402 | ||||
SVD | MAE | Existing | 0.601 | 0.374 | 33.589 | 0.000 |
Proposal | 0.511 | 0.311 | ||||
RMSE | Existing | 0.710 | 0.426 | 38.775 | 0.000 | |
Proposal | 0.592 | 0.351 | ||||
NCF | MAE | Existing | 0.600 | 0.422 | 41.192 | 0.000 |
Proposal | 0.468 | 0.383 | ||||
RMSE | Existing | 0.747 | 0.506 | 37.542 | 0.000 | |
Proposal | 0.605 | 0.444 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Li, X.; Lee, B.; Kim, J. A Hybrid CNN-Based Review Helpfulness Filtering Model for Improving E-Commerce Recommendation Service. Appl. Sci. 2021, 11, 8613. https://doi.org/10.3390/app11188613
Li Q, Li X, Lee B, Kim J. A Hybrid CNN-Based Review Helpfulness Filtering Model for Improving E-Commerce Recommendation Service. Applied Sciences. 2021; 11(18):8613. https://doi.org/10.3390/app11188613
Chicago/Turabian StyleLi, Qinglong, Xinzhe Li, Byunghyun Lee, and Jaekyeong Kim. 2021. "A Hybrid CNN-Based Review Helpfulness Filtering Model for Improving E-Commerce Recommendation Service" Applied Sciences 11, no. 18: 8613. https://doi.org/10.3390/app11188613
APA StyleLi, Q., Li, X., Lee, B., & Kim, J. (2021). A Hybrid CNN-Based Review Helpfulness Filtering Model for Improving E-Commerce Recommendation Service. Applied Sciences, 11(18), 8613. https://doi.org/10.3390/app11188613