Unravelling the Anisotropic Behavior of Nickel—Wires Prepared through External Magnetic Field Assisted Hydrazine Reduction Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. X-ray Diffraction Analysis
3.2. Morphological Analysis
3.3. Magnetization Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, Y.; Lye, M.L.; Zeng, H.C. Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires. Langmuir 2005, 21, 3746–3748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Wang, J.; Wei, L.M.; Liu, P.; Wei, H.; Zhang, Y.F. Synthesis of Ni nanowires via a hydrazine reduction route in aqueous ethanol solutions assisted by external magnetic fields. Nano-Micro Lett. 2009, 1, 49–52. [Google Scholar] [CrossRef]
- Yoo, B.; Rheem, Y.; Beyermann, W.P.; Myung, N.V. Magnetically assembled 30 nm diameter nickel nanowire with ferromagnetic. Nanotechnology 2006, 17, 2512–2517. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Wada, K.; Inoue, S.; Todoroki, S. Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition. Chem. Mater. 2002, 14, 4595–4602. [Google Scholar] [CrossRef]
- Vega, V.; Böhnert, T.; Martens, S.; Waleczek, M.; Montero-Moreno, J.M.; Görlitz, D.; Prida, V.M.; Nielsch, K. Tuning the magnetic anisotropy of Co–Ni nanowires: Comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 2012, 23, 465709. [Google Scholar] [CrossRef] [PubMed]
- Pignard, S.; Goglio, G.; Radulescu, A.; Piraux, L.; Dubois, S.; Declemy, A.; Duvail, J.L. Study of the magnetization reversal in individual nickel nanowires. J. Appl. Phys. 2000, 87, 824–849. [Google Scholar] [CrossRef]
- Kumar, A.; Fähler, S.; Schlörb, H.; Leistner, K.; Schultz, L. Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates. Phys. Rev. B 2006, 73, 064421. [Google Scholar] [CrossRef]
- Wegrowe, J.; Kelly, D.; Franck, A.; Gilbert, S.E.; Ansermet, J. Magnetoresistance of Ferromagnetic Nanowires. Phys. Rev. Lett. 1999, 82, 3681–3684. [Google Scholar] [CrossRef]
- Encinas-Oropesa, A.; Demand, M.; Piraux, L.; Huynen, I.; Ebels, U. Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 2001, 63, 104415. [Google Scholar] [CrossRef]
- Kong, Y.Y.; Cem, S.; Chin, S.F. Facile synthesis of nickel nanowires with controllable morphology. Mater. Lett. 2015, 142, 1–3. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Mathew, A.; Munichandraiah, N.; Rao, G.M. Synthesis and magnetic studies of flower-like nickel nanocones. Mater. Sci. Eng. B 2009, 158, 7–12. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Zeng, C.; Hou, B. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 2004, 16, 137–140. [Google Scholar] [CrossRef]
- Grossinger, R. A critical examination of the law of approach to saturation. I. Fit procedure. Phys. Status Solidi 1981, 66, 665–674. [Google Scholar] [CrossRef]
- Kumar, L.; Kumar, P.; Kar, M. Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys Compd. 2013, 551, 72–81. [Google Scholar] [CrossRef]
- Tanase, M.; Bauer, L.A.; Hultgren, A.; Silevitch, D.M.; Sun, L.; Reich, D.H.; Searson, P.C.; Meyer, G.J. Magnetic Alignment of Fluorescent Nanowires. Nano Lett. 2001, 1, 155–158. [Google Scholar] [CrossRef]
Ms (emu/g) | K (×104) (erg/cm3) | |||
---|---|---|---|---|
300 K | 50 K | 300 K | 50 K | |
Ni-Non-Magnetic | 49.1 | 52.8 | 2.78 | 2.81 |
Ni-Double | 49.0 | 52.6 | 2.33 | 2.75 |
Ni-Single | 39.8 | 51.9 | 2.15 | 3.23 |
Ni-Ring | 43.7 | 50.0 | 2.06 | 3.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-S.; Shin, M.-J.; Kumar, A.; Kumari, K.; Huh, S.-H.; Koo, B.-H. Unravelling the Anisotropic Behavior of Nickel—Wires Prepared through External Magnetic Field Assisted Hydrazine Reduction Method. Appl. Sci. 2021, 11, 8627. https://doi.org/10.3390/app11188627
Kim M-S, Shin M-J, Kumar A, Kumari K, Huh S-H, Koo B-H. Unravelling the Anisotropic Behavior of Nickel—Wires Prepared through External Magnetic Field Assisted Hydrazine Reduction Method. Applied Sciences. 2021; 11(18):8627. https://doi.org/10.3390/app11188627
Chicago/Turabian StyleKim, Min-Soo, Min-Ji Shin, Akshay Kumar, Kavita Kumari, Seok-Hwan Huh, and Bon-Heun Koo. 2021. "Unravelling the Anisotropic Behavior of Nickel—Wires Prepared through External Magnetic Field Assisted Hydrazine Reduction Method" Applied Sciences 11, no. 18: 8627. https://doi.org/10.3390/app11188627
APA StyleKim, M. -S., Shin, M. -J., Kumar, A., Kumari, K., Huh, S. -H., & Koo, B. -H. (2021). Unravelling the Anisotropic Behavior of Nickel—Wires Prepared through External Magnetic Field Assisted Hydrazine Reduction Method. Applied Sciences, 11(18), 8627. https://doi.org/10.3390/app11188627