The Relationship between Stress Levels Measured by a Questionnaire and the Data Obtained by Smart Glasses and Finger Pulse Oximeters among Polish Dental Students
Abstract
:1. Introduction
2. Related Works
3. Study Objective
4. Materials and Methods
4.1. Experiment Setup
- How performing a task affects your perceived stress level:
- While watching the film (before the sound signal)?
- During the performed task (after the sound signal)?
- After completing the task?
- How stressful was waiting for the signal to occur and to start performing the task?
4.2. Technology Used
4.3. Signal Processing
4.4. Statistical Analysis
5. Results
6. Discussion
6.1. Limitations of the Study
6.2. Practical Application
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigues, S.; Paiva, J.S.; Dias, D.; Aleixo, M.; Filipe, R.M.; Cunha, J.P.S. Cognitive impact and psychophysiological effects of stress using a biomonitoring platform. Int. J. Environ. Res. Public Health 2018, 15, 1080. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.G.; Ørnbøl, E.; Vestergaard, M.; Bech, P.; Larsen, F.B.; Lasgaard, M.; Christensen, K.S. The construct validity of the Perceived Stress Scale. J. Psychosom. Res. 2016, 84, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.W.; Ku, Y.; Kim, H.C. A novel wearable EEG and ECG recording system for stress assessment. Sensors 2019, 19, 1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Júnior, I.G.O.; Camelo, L.V.; Mill, J.G.; Ribeiro, A.L.; de Jesus Mendes da Fonseca, M.; Griep, R.H.; Bensenor, I.J.; Santos, I.S.; Barreto, S.M.; Giatti, L. Job stress and heart rate variability: Findings fromthe ELSA-Brasil Cohort study. Psychosom. Med. 2019, 81, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Parent, M.; Peysakhovich, V.; Mandrick, K.; Tremblay, S.; Causse, M. The diagnosticity of psychophysiological signatures: Can we disentangle mental workload from acute stress with ECG and fNIRS? Int. J. Psychophysiol. 2019, 146, 139–147. [Google Scholar] [CrossRef]
- Meina, M.; Ratajczak, E.; Sadowska, M.; Rykaczewski, K.; Dreszer, J.; Bałaj, B.; Biedugnis, S.; Węgrzyński, W.; Krasuski, A. Heart rate variability and accelerometry as classification tools for monitoring perceived stress levels—A pilot study on firefighters. Sensors 2020, 20, 2834. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, R.; Melillo, P.; Bracale, U.; Caserta, M.; Triassi, M.; Pecchia, L. Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomed. Signal Process. Control 2015, 18, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Trotman, G.P.; Veldhuijzen van Zanten, J.J.C.S.; Davies, J.; Möller, C.; Ginty, A.T.; Williams, S.E. Associations between heart rate, perceived heart rate, and anxiety during acute psychological stress. Anxiety Stress Coping 2019, 32, 711–727. [Google Scholar] [CrossRef] [Green Version]
- Szyjkowska, A.; Gadzicka, E.; Szymczak, W.; Bortkiewicz, A. The reaction of the circulatory system to stress and electromagnetic fields emitted by mobile phones—24-h monitoring of ECG and blood pressure. Med. Pract. 2019, 70, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Giannakakis, G.; Manousos, D.; Simos, P.; Tsiknakis, M. Head movements in context of speech during stress induction. In Proceedings of the 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 710–714. [Google Scholar] [CrossRef]
- Hadar, U.; Steiner, T.; Grant, E.; Rose, F.C. Head movement correlates of juncture and stress at sentence level. Lang. Speech 1983, 26, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Pander, T.; Przybyla, T.; Czabanski, R. An application of detection function for the eye blinking detection. In Proceedings of the Conference on Human System Interactions, Krakow, Poland, 25–27 May 2008; pp. 287–291. [Google Scholar] [CrossRef]
- Käthner, I.; Kübler, A.; Halder, S. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: A case study with a participant in the locked-in state. J. Neuroeng. Rehabil. 2015, 12, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doniec, R.; Sieciński, S.; Piaseczna, N.; Mocny-Pachońska, K.; Lang, M.; Szymczyk, J. The classifier algorithm for recognition of basic driving scenarios. In Information Technology in Biomedicine; Piętka, E., Badura, P., Kawa, J., Więcławek, W., Eds.; Springer Nature AG: Cham, Switzerland, 2020; pp. 359–367. [Google Scholar] [CrossRef]
- Niwa, S.; Yuki, M.; Noro, T.; Shioya, S.; Inoue, K. A Wearable Device for Traffic Safety—A Study on Estimating Drowsiness with Eyewear, JINS MEME; SAE Technical Paper Series; SAE International: Detroit, MI, USA, 2016. [Google Scholar] [CrossRef]
- Stapel, J.; Hassnaoui, M.E.; Happee, R. Measuring driver perception: Combining eye-tracking and automated road scene perception. Hum. Factors Int. J. Hum. Factors Ergon. 2020. [Google Scholar] [CrossRef] [PubMed]
- Joseph, D.P.; Miller, S.S. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J. Physiol. 1991, 435, 439–463. [Google Scholar] [CrossRef] [PubMed]
- Korda, A.I.; Giannakakis, G.; Ventouras, E.; Asvestas, P.A.; Smyrnis, N.; Marias, K.; Matsopoulos, G.K. Recognition of blinks activity patterns during stress conditions using CNN and markovian analysis. Signals 2021, 2, 6. [Google Scholar] [CrossRef]
- Dumitrescu, C.; Stanley, M.; Treat, J.; Zacharsky, A.; Zaugg, A. The effect of a visual distraction on test-taking performance. J. Adv. Stud. Sci. JASS 2019, 2018. Available online: http://digital.library.wisc.edu/1793/81995 (accessed on 13 September 2021).
- Müller, J.A.; Wendt, D.; Kollmeier, B.; Brand, T. Comparing eye tracking with electrooculography for measuring individual sentence comprehension duration. PLoS ONE 2016, 11, e0164627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayner, K. Visual attention in reading: Eye movements reflect cognitive processes. Mem. Cogn. 1977, 5, 443–448. [Google Scholar] [CrossRef]
- Piazza-Waggoner, C.A.; Cohen, L.L.; Kohli, K.; Taylor, B.K. Stress management for dental students performing their first pediatric restorative procedure. J. Dent. Educ. 2003, 67, 542–548. [Google Scholar] [CrossRef]
- Dyrbye, L.N.; Thomas, M.R.; Shanafelt, T.D. Systematic review of depression, anxiety, and other indicators of psychological distress among U.S. and Canadian medical students. Acad. Med. 2006, 81, 354–373. [Google Scholar] [CrossRef]
- Divaris, K.; Mafla, A.C.; Villa-Torres, L.; Sánchez-Molina, M.; Gallego-Gómez, C.L.; Vélez-Jaramillo, L.F.; Tamayo-Cardona, J.A.; Pérez-Cepeda, D.; Vergara-Mercado, M.L.; Simancas-Pallares, M.Á.; et al. Psychological distress and its correlates among dental students: A survey of 17 Colombian dental schools. BMC Med. Educ. 2013, 13, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albajjar, M.; Bakarman, M. Prevalence and correlates of depression among male medical students and interns in Albaha University, Saudi Arabia. J. Fam. Med. Prim. Care 2019, 8, 1889–1894. [Google Scholar] [CrossRef]
- Brazeau, C.M.; Shanafelt, T.; Durning, S.J.; Massie, F.S.; Eacker, A.; Moutier, C.; Satele, D.V.; Sloan, J.A.; Dyrbye, L.N. Distress among matriculating medical students relative to the general population. Acad. Med. 2014, 89, 1520–1525. [Google Scholar] [CrossRef]
- Kötter, T.; Wagner, J.; Brüheim, L.; Voltmer, E. Perceived Medical School stress of undergraduate medical students predicts academic performance: An observational study. BMC Med. Educ. 2017, 17, 256. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.; Cockerill, J.; Zahra, D.; Tredwin, C.; Ferguson, C. Impact of Progress testing on the learning experiences of students in medicine, dentistry and dental therapy. BMC Med. Educ. 2018, 18, 253. [Google Scholar] [CrossRef] [Green Version]
- Halboub, E.; Alhajj, M.N.; AlKhairat, A.M.; Sahaqi, A.A.M.; Quadri, M.F.A. Perceived stress among undergraduate dental students in relation to gender, clinical training and academic performance. Acta Stomatol. Croat. 2018, 52, 37–45. [Google Scholar] [CrossRef]
- Mocny-Pachońska, K.; Doniec, R.; Trzcionka, A.; Pachoński, M.; Piaseczna, N.; Sieciński, S.; Osadcha, O.; Łanowy, P.; Tanasiewicz, M. Evaluating the stress-response of dental students to the dental school environment. PeerJ 2020, 8, e8981. [Google Scholar] [CrossRef]
- Mocny-Pachońska, K.; Doniec, R.J.; Wójcik, S.; Sieciński, S.; Piaseczna, N.J.; Duraj, K.M.; Tkacz, E.J. Evaluation of the most stressful dental treatment procedures of conservative dentistry among polish dental students. Int. J. Environ. Res. Public Health 2021, 18, 4448. [Google Scholar] [CrossRef]
- Basudan, S.; Binanzan, N.; Alhassan, A. Depression, anxiety and stress in dental students. Int. J. Med. Educ. 2017, 8, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Mocny-Pachońska, K.; Doniec, R.; Trzcionka, A.; Lang, M.; Pachoński, M.; Piaseczna, N.; Sieciński, S.; Twardawa, H.; Tanasiewicz, M. The stress level assessment based on socio-demographic and gender factors among Polish and Taiwanese female and male junior dental students. In Information and Software Technologies, Proceedings of the 25th International Conference (ICIST 2019), Vilnius, Lithuania, 10–12 October 2019; Damaševičius, R., Vasiljeviene, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1078, pp. 553–564. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385. [Google Scholar] [CrossRef]
- Al-Sowygh, Z.H. Academic distress, perceived stress and coping strategies among dental students in Saudi Arabia. Saudi Dent. J. 2013, 25, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.R.; Henry, J.D. The Depression Anxiety Stress Scales (DASS): Normative data and latent structure in a large non-clinical sample. Br. J. Clin. Psychol. 2003, 42, 111–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovibond, P.; Lovibond, S. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Antony, M.M.; Bieling, P.J.; Cox, B.J.; Enns, M.W.; Swinson, R.P. Psychometric properties of the 42-item and 21-item versions of the Depression Anxiety Stress Scales in clinical groups and a community sample. Psychol. Assess. 1998, 10, 176–181. [Google Scholar] [CrossRef]
- Clark, L.A.; Watson, D. Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J. Abnorm. Psychol. 1991, 100, 316–336. [Google Scholar] [CrossRef]
- Anderson, E.; Hope, D. A review of the tripartite model for understanding the link between anxiety and depression in youth. Clin. Psychol. Rev. 2008, 28, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.A.; Chorpita, B.F.; Barlow, D.H. Structural relationships among dimensions of the DSM-IV anxiety and mood disorders and dimensions of negative affect, positive affect, and autonomic arousal. J. Abnorm. Psychol. 1998, 107, 179–192. [Google Scholar] [CrossRef]
- Gloster, A.T.; Rhoades, H.M.; Novy, D.; Klotsche, J.; Senior, A.; Kunik, M.; Wilson, N.; Stanley, M.A. Psychometric properties of the Depression Anxiety and Stress Scale-21 in older primary care patients. J. Affect. Disord. 2008, 110, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Thomas, O.; Hanton, S.; Jones, G. An alternative approach to short-form self-report assessment of competitive anxiety: A research note. Int. J. Sport Psychol. 2002, 33, 325–336. [Google Scholar]
- Trotman, G.P.; Williams, S.E.; Quinton, M.L.; van Zanten, J.J.V. Challenge and threat states: Examining cardiovascular, cognitive and affective responses to two distinct laboratory stress tasks. Int. J. Sport Psychol. 2018, 126, 42–51. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P. Perceived stress and psychological distress among chinese physicians. Medicine 2019, 98, e15950. [Google Scholar] [CrossRef]
- Lin, X.J.; Zhang, C.Y.; Yang, S.; Hsu, M.L.; Cheng, H.; Chen, J.; Yu, H. Stress and its association with academic performance among dental undergraduate students in Fujian, China: A cross-sectional online questionnaire survey. BMC Med. Educ. 2020, 20, 181. [Google Scholar] [CrossRef] [PubMed]
- Stormon, N.; Ford, P.J.; Kisely, S.; Bartle, E.; Eley, D.S. Depression, anxiety and stress in a cohort of Australian dentistry students. Eur. J. Dent. Educ. 2019, 23, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocny-Pachońska, K.; Trzcionka, A.; Doniec, R.J.; Sieciński, S.; Tanasiewicz, M. The influence of gender and year of study on stress levels and coping strategies among Polish dental. Medicina 2020, 56, 531. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, W.; Zhu, Z.; Ji, Q. A Real-time human stress monitoring system using dynamic bayesian network. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)—Workshops, San Diego, CA, USA, 20–25 June 2005; p. 70. [Google Scholar] [CrossRef]
- Sioni, R.; Chittaro, L. Stress detection using physiological sensors. IEEE Comput. 2015, 48, 26–33. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Dürichen, R.; Laerhoven, K.V. Wearable-based affect recognition—A review. Sensors 2019, 19, 4079. [Google Scholar] [CrossRef] [Green Version]
- Affanni, A. Wireless sensors system for stress detection by means of ECG and EDA acquisition. Sensors 2020, 20, 2026. [Google Scholar] [CrossRef] [Green Version]
- Kocielnik, R.; Sidorova, N.; Maggi, F.M.; Ouwerkerk, M.; Westerink, J.H.D.M. Smart technologies for long-term stress monitoring at work. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Portugal, 20–22 June 2013; pp. 53–58. [Google Scholar] [CrossRef]
- Yoon, S.; Sim, J.K.; Cho, Y.H. A flexible and wearable human stress monitoring patch. Sci. Rep. 2016, 6, 23468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.; Lee, C.Y.; Kwak, D.H.; Ha, J.W.; Kim, J.; Zhang, B.T. Dual-memory neural networks for modeling cognitive activities of humans via wearable sensors. Neural Netw. 2017, 92, 17–28. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.; Hwang, J.Y.; Chung, J.; Jang, T.M.; Seo, D.G.; Gao, Y.; Lee, J.; Park, H.; Lee, S.; et al. 3D printed, customizable, and multifunctional smart electronic eyeglasses for wearable healthcare systems and human-machine interfaces. ACS Appl. Mater. Interfaces 2020, 12, 21424–21432. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef]
- Menghini, L.; Gianfranchi, E.; Cellini, N.; Patron, E.; Tagliabue, M.; Sarlo, M. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Psychophysiology 2019, 56, e13441. [Google Scholar] [CrossRef]
- Servati, A.; Zou, L.; Wang, Z.; Ko, F.; Servati, P. Novel flexible wearable sensor materials and signal processing for vital sign and human activity monitoring. Sensors 2017, 17, 1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisar, M.A.; Shirahama, K.; Li, F.; Huang, X.; Grzegorzek, M. Rank pooling approach for wearable sensor-based ADLs recognition. Sensors 2020, 20, 3463. [Google Scholar] [CrossRef] [PubMed]
- JINS Holdings, Inc. JINS MEME Glasses Specifications. Available online: https://jins-meme.com/en/researchers/specifications/ (accessed on 27 March 2021).
- Casalino, G.; Castellano, G.; Zaza, G. A mHealth solution for contact-less self-monitoring of blood oxygen saturation. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Ishimaru, S.; Kunze, K.; Tanaka, K.; Uema, Y.; Kise, K.; Inami, M. Smart eyewear for interaction and activity recognition. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems CHI EA ’15, Seoul, Korea, 18–23 April 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 307–310. [Google Scholar] [CrossRef]
- Hou, X.; Liu, Y.; Sourina, O.; Tan, Y.R.E.; Wang, L.; Mueller-Wittig, W. EEG based stress monitoring. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 3110–3115. [Google Scholar] [CrossRef]
- Medical University of Silesia. Resolution No. 161/2020 of 08.09.2020 by the Rector of the Medical University of Silesia in Katowice. Available online: http://www3.sum.edu.pl/files/25406/res_161_2020.pdf (accessed on 12 May 2021).
- Auksztol, J. (Ed.) Higher Education and Its Finances in 2019; Statistics Poland: Warsaw, Poland, 2020. Available online: https://stat.gov.pl/en/topics/education/education/higher-education-and-its-finances-in-2019,2,13.html (accessed on 19 April 2021).
- Umoren, R.A.; Sawyer, T.L.; Ades, A.; DeMeo, S.; Foglia, E.E.; Glass, K.; Gray, M.M.; Barry, J.; Johnston, L.; Jung, P.; et al. Team stress and adverse events during neonatal tracheal intubations: A report from NEAR4NEOS. Am. J. Perinatol. 2019, 37, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Uema, Y.; Inoue, K. JINS MEME algorithm for estimation and tracking of concentration of users. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017; ACM: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Jia, Y.; Tyler, C.W. Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording. Behav. Res. Methods 2019, 51, 2139–2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Friedman, M. A correction. J. Am. Stat. Assoc. 1939, 34, 109. [Google Scholar] [CrossRef]
- Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Mauchly, J.W. Significance test for sphericity of a normal n-variate distribution. Ann. Math. Stat. 1940, 11, 204–209. [Google Scholar] [CrossRef]
- Al-jabery, K.K.; Obafemi-Ajayi, T.; Olbricht, G.R.; Wunsch, D.C., II. Data preprocessing. In Computational Learning Approaches to Data Analytics in Biomedical Applications; Al-jabery, K.K., Obafemi-Ajayi, T., Olbricht, G.R., Wunsch, D.C., II, Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 7–27. [Google Scholar] [CrossRef]
- Doniec, R.J.; Sieciński, S.; Duraj, K.M.; Piaseczna, N.J.; Mocny-Pachońska, K.; Tkacz, E.J. Recognition of drivers’ activity based on 1D convolutional neural network. Electronics 2020, 9, 2002. [Google Scholar] [CrossRef]
- Li, F.; Shirahama, K.; Nisar, M.; Köping, L.; Grzegorzek, M. Comparison of feature learning methods for human activity recognition using wearable sensors. Sensors 2018, 18, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirahama, K.; Grzegorzek, M. Emotion recognition based on physiological sensor data using codebook approach. In Information Technologies in Medicine; Piętka, E., Badura, P., Kawa, J., Wieclawek, W., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 27–39. [Google Scholar]
- Deng, L.Y.; Hsu, C.L.; Lin, T.C.; Tuan, J.S.; Chang, S.M. EOG-based Human–Computer Interface system development. Expert Syst. Appl. 2010, 37, 3337–3343. [Google Scholar] [CrossRef]
- García-Nieto, J.; Alba, E.; Apolloni, J. Hybrid DE-SVM approach for feature selection: Application to gene expression datasets. In Proceedings of the 2009 2nd International Symposium on Logistics and Industrial Informatics (LINDI), Linz, Austria, 10–11 September 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Kuo, B.C.; Ho, H.H.; Li, C.H.; Hung, C.C.; Taur, J.S. A Kernel-based feature selection method for SVM with RBF Kernel for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 317–326. [Google Scholar] [CrossRef]
- Persello, C.; Bruzzone, L. Kernel-based domain-invariant feature selection in hyperspectral images for transfer learning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2615–2626. [Google Scholar] [CrossRef]
- Xu, J.W.; Suzuki, K. Max-AUC feature selection in computer-aided detection of polyps in CT colonography. IEEE J. Biomed. Health Inform. 2014, 18, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J. The Polygraph and the Frye Case; Deptartment of Political Science & Criminal Justice, Edinboro University of Pennsylvania: Edinboro, PA, USA, 2015; Available online: http://jimfisher.edinboro.edu/forensics/frye.html (accessed on 13 September 2021).
Dunn-Bonferroni | ||||
---|---|---|---|---|
Conover | p | Before the task | During the task | After the task |
Before the task | <0.001 | <0.001 | ||
During the task | <0.001 | 0.953 | ||
After the task | <0.001 | 0.030 |
Dunn-Bonferroni | ||||
---|---|---|---|---|
Conover | p | Before the task | During the task | After the task |
Before the task | <0.001 | 1.000 | ||
During the task | <0.001 | <0.001 | ||
After the task | 0.134 | <0.001 |
HR-Stress Level | Before the Task | During the Task | After the Task |
---|---|---|---|
r | 0.070 | 0.561 | 0.317 |
p | 0.385 | 0.005 | 0.087 |
ACC-Stress Level | Before the Task | During the Task |
---|---|---|
r | −0.047 | 0.179 |
p | 0.844 | 0.450 |
GYRO-Stress Level | Before the Task | During the Task |
---|---|---|
r | −0.170 | 0.312 |
p | 0.475 | 0.181 |
EOG-Stress Level | Before the Task | During the Task |
---|---|---|
r | −0.301 | 0.300 |
p | 0.197 | 0.199 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocny-Pachońska, K.; Doniec, R.J.; Sieciński, S.; Piaseczna, N.J.; Pachoński, M.; Tkacz, E.J. The Relationship between Stress Levels Measured by a Questionnaire and the Data Obtained by Smart Glasses and Finger Pulse Oximeters among Polish Dental Students. Appl. Sci. 2021, 11, 8648. https://doi.org/10.3390/app11188648
Mocny-Pachońska K, Doniec RJ, Sieciński S, Piaseczna NJ, Pachoński M, Tkacz EJ. The Relationship between Stress Levels Measured by a Questionnaire and the Data Obtained by Smart Glasses and Finger Pulse Oximeters among Polish Dental Students. Applied Sciences. 2021; 11(18):8648. https://doi.org/10.3390/app11188648
Chicago/Turabian StyleMocny-Pachońska, Katarzyna, Rafał J. Doniec, Szymon Sieciński, Natalia J. Piaseczna, Marek Pachoński, and Ewaryst J. Tkacz. 2021. "The Relationship between Stress Levels Measured by a Questionnaire and the Data Obtained by Smart Glasses and Finger Pulse Oximeters among Polish Dental Students" Applied Sciences 11, no. 18: 8648. https://doi.org/10.3390/app11188648
APA StyleMocny-Pachońska, K., Doniec, R. J., Sieciński, S., Piaseczna, N. J., Pachoński, M., & Tkacz, E. J. (2021). The Relationship between Stress Levels Measured by a Questionnaire and the Data Obtained by Smart Glasses and Finger Pulse Oximeters among Polish Dental Students. Applied Sciences, 11(18), 8648. https://doi.org/10.3390/app11188648