Exploring the Rheology of a Seismogenic Zone by Applying Seismic Variation
Abstract
:Featured Application
Abstract
1. Introduction
2. Geological Setting
3. Data and Methods
4. Model Examination
5. Results and Discussion
5.1. Temporal Evolution of a Velocity Structure
5.2. Tectonic Implications
6. Conclusions
- The results showed that the temporal variations of Vp were less than those of Vs, and Vp was not affected significantly before the occurrence of the Chi-Chi earthquake.
- The velocity profile indicates that the temporal variation of the subsurface velocity structure may have been affected before the occurrence of the Chi-Chi earthquake sequences. In the α area, the decreased Vs and increased pore pressure are attributed to the increasing density of microcracks and the possibility of fluid or gas intrusion. Moreover, we observed increasing Vs in the β area; this was because the β area was located on the eastern side of the α area. It was presumed that the direction of the tectonic stress was from the southeast, resulting in the closure of the pores and fluid migration in the β area. This phenomenon may be attributed to the different mechanism of action in the α and β areas.
- Based on the present results, the temporal variations reflect precursory phenomena in the source area before the Chi-Chi earthquake and the range of the CLF affected by the Chi-Chi earthquake.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Tsai, H.F. Variations of ionospheric total electron content during the Chi-Chi Earthquake. Geophys. Res. Lett. 2001, 28, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Akhoondzadeh, M. Genetic algorithm for TEC seismo-ionospheric anomalies detection around the time of the Solomon (Mw = 8.0) earthquake of 06 February 2013. Adv. Space Res. 2013, 52, 581–590. [Google Scholar] [CrossRef]
- Melgarejo-Morales, A.; Vazquez-Becerra, G.E.; Millan-Almaraz, J.R.; Pérez-Enríquez, R.; Félix, C.A.M.; Gaxiola-Camacho, J.R. Examination of seismo-ionospheric anomalies before earthquakes of Mw ≥ 5.1 for the period 2008–2015 in Oaxaca, Mexico using GPS-TEC. Acta Geophys. 2020, 68, 1–16. [Google Scholar] [CrossRef]
- Wu, Y.-M.; Chen, C.-C. Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake. Tectonophysics 2007, 429, 125–132. [Google Scholar] [CrossRef]
- Asim, K.M.; Martínez-Álvarez, F.; Basit, A.; Iqbal, T. Earthquake magnitude prediction in Hindukush region using machine learning techniques. Nat. Hazards 2016, 85, 471–486. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wang, W.-H.; Teng, T.-L. 3D Velocity Structure around the Source Area of the 1999 Chi-Chi, Taiwan, Earthquake: Before and After the Mainshock. Bull. Seism. Soc. Am. 2004, 91, 1013–1027. [Google Scholar] [CrossRef]
- Walck, M.C. Three-dimensionalVp/Vsvariations for the Coso Region, California. J. Geophys. Res. Space Phys. 1988, 93, 2047. [Google Scholar] [CrossRef]
- Michelini, A.; McEvilly, T. Seismological studies at Parkfield. I. Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization. Bull. Seismol. Soc. Am. 1991, 81, 524–552. [Google Scholar]
- Miller, S.A. Fluid-mediated influence of adjacent thrusting on the seismic cycle at Parkfield. Nature 1996, 382, 799–802. [Google Scholar] [CrossRef]
- Li, Y.-G.; Chen, P.; Cochran, E.S.; Vidale, J.E. Seismic velocity variations on the San Andreas fault caused by the 2004 M6 Parkfield Earthquake and their implications. Earth Planets Space 2007, 59, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Foulger, G.R.; Julian, B.R.; Pitt, A.M.; Hill, D.P.; Malin, P.E.; Shalev, E. Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2under Mammoth Mountain. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Patane, D.; Barberi, G.; Cocina, O.; De Gori, P.; Chiarabba, C. Time-Resolved Seismic Tomography Detects Magma Intrusions at Mount Etna. Science 2006, 313, 821–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, Y.P.; Sykes, L.R.; Armbruster, J.; Sbar, M.L. Premonitory Changes in Seismic Velocities and Prediction of Earthquakes. Nature 1973, 241, 101–104. [Google Scholar] [CrossRef]
- Julian, B.R.; Foulger, G.R. Time-dependent seismic tomography. Geophys. J. Int. 2010, 182, 1327–1338. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Chiu, J.-M.; Pujol, J.; Chen, K.-C.; Huang, B.-S.; Yeh, Y.-H.; Shen, P. Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophys. J. Int. 2005, 162, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-M.; Chang, C.-H.; Zhao, L.; Shyu, J.B.H.; Chen, Y.-G.; Sieh, K.; Avouac, J.-P. Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Kuo-Chen, H.; Wu, F.T.; Roecker, S.W. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-H.; Wu, Y.-M.; Song, X.; Chang, C.-H.; Lee, S.-J.; Chang, T.-M.; Hsieh, H.-H. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth Planet. Sci. Lett. 2014, 392, 177–191. [Google Scholar] [CrossRef]
- Sibuet, J.-C.; Hsu, S.-K. How was Taiwan created? Tectonophysics 2004, 379, 159–181. [Google Scholar] [CrossRef]
- Yu, S.-B.; Chen, H.-Y.; Kuo, L.-C. Velocity field of GPS stations in the Taiwan area. Tectonophysics 1997, 274, 41–59. [Google Scholar] [CrossRef]
- Lin, A.T.; Watts, A.B.; Hesselbo, S.P. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res. 2003, 15, 453–478. [Google Scholar] [CrossRef]
- Teng, L.; Lin, A.T. Cenozoic tectonics of the China continental margin: Insights from Taiwan. Geol. Soc. London Spéc. Publ. 2004, 226, 313–332. [Google Scholar] [CrossRef]
- Yang, K.-M.; Huang, S.-T.; Wu, J.-C.; Ting, H.-H.; Mei, W.-W. Review and New Insights on Foreland Tectonics in Western Taiwan. Int. Geol. Rev. 2006, 48, 910–941. [Google Scholar] [CrossRef]
- Camanni, G.; Chen, C.-H.; Brown, D.; Alvarez-Marron, J.; Wu, Y.-M.; Chen, H.-A.; Huang, H.-H.; Chu, H.-T.; Chen, M.-M.; Chang, C.-H. Basin inversion in central Taiwan and its importance for seismic hazard. Geology 2014, 42, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Alvarez-Marron, J.; Schimmel, M.; Wu, Y.-M.; Camanni, G. The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data. Tectonics 2012, 31. [Google Scholar] [CrossRef] [Green Version]
- Camanni, G.; Brown, D.; Alvarez-Marron, J.; Wu, Y.-M.; Chen, H.-A. The Shuilikeng fault in the central Taiwan mountain belt. J. Geol. Soc. 2014, 171, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Suppe, J. Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China 1981, 4, 67–89. [Google Scholar]
- Jackson, J.A. Reactivation of basement faults and crustal shortening in orogenic belts. Nature 1980, 283, 343–346. [Google Scholar] [CrossRef]
- Poblet, J.; Lisle, R.J. Kinematic evolution and structural styles of fold-and-thrust belts. Geol. Soc. London Spéc. Publ. 2011, 349, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Hasegawa, A.; Suganomata, J.; Umino, N.; Zhang, H.; Thurber, C.H. Imaging the heterogeneous source area of the 2003 M6.4 northern Miyagi earthquake, NE Japan, by double-difference tomography. Tectonophysics 2007, 430, 67–81. [Google Scholar] [CrossRef]
- Sibson, R.H. Rupturing in overpressured crust during compressional inversion—the case from NE Honshu, Japan. Tectonophysics 2009, 473, 404–416. [Google Scholar] [CrossRef]
- Koulakov, I.; Gladkov, V.; El Khrepy, S.; Al-Arifi, N.; Fathi, I.H. Application of repeated passive source travel time tomography to reveal weak velocity changes related to the 2011 Tohoku-Oki Mw 9.0 earthquake. J. Geophys. Res. Solid Earth 2016, 121, 4408–4426. [Google Scholar] [CrossRef] [Green Version]
- Koulakov, I. LOTOS Code for Local Earthquake Tomographic Inversion: Benchmarks for Testing Tomographic Algorithms. Bull. Seism. Soc. Am. 2009, 99, 194–214. [Google Scholar] [CrossRef]
- Um, J.; Thurber, C. A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am. 1987, 77, 972–986. [Google Scholar] [CrossRef]
- Koulakov, I.; Sobolev, S.V. A tomographic image of Indian lithosphere break-off beneath the Pamir-Hindukush region. Geophys. J. Int. 2006, 164, 425–440. [Google Scholar] [CrossRef] [Green Version]
- Paige, C.C.; Saunders, M.A. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 1982, 8, 43–71. [Google Scholar] [CrossRef]
- Van Der Sluis, A.; Van der Vorst, H. Numerical solution of large, sparse linear algebraic systems arising from tomographic problems. In Seismic Tomography; Springer: Berlin/Heidelberg, Germany, 1987; pp. 49–83. [Google Scholar] [CrossRef]
- Koulakov, I.; Bohm, M.; Asch, G.; Lühr, B.-G.; Manzanares, A.; Brotopuspito, K.S.; Fauzi, P.; Purbawinata, M.A.; Puspito, N.T.; Ratdomopurbo, A.; et al. PandSvelocity structure of the crust and the upper mantle beneath central Java from local tomography inversion. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.; Nur, A. Effect of temperature, pore fluids, and pressure on seismic wave velocity and attenuation in rock. In SEG Technical Program Expanded Abstracts 1983; Society of Exploration Geophysicists: Tulsa, OK, USA, 1983; pp. 583–585. [Google Scholar]
- O’Connell, R.J.; Budiansky, B. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. Space Phys. 1974, 79, 5412–5426. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Sleep, N.H. Grain size and chemical controls on the ductile properties of mostly frictional faults at low-temperature hydrothermal conditions. Pure Appl. Geophys. 1994, 143, 41–60. [Google Scholar] [CrossRef]
- Crampin, S. Calculable fluid–rock interactions. J. Geol. Soc. 1999, 156, 501–514. [Google Scholar] [CrossRef]
- Soleimani, M. Naturally fractured hydrocarbon reservoir simulation by elastic fracture modeling. Pet. Sci. 2017, 14, 286–301. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Chen, C.-S.; Shieh, C.-F. Crustal Electrical Conductors, Crustal Fluids and 1999 Chi-Chi, Taiwan, Earthquake. Terr. Atmos. Ocean. Sci. 2002, 13, 367. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.M.; Hsu, Y.-J.; Segall, P.; Yu, S.-B. Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan Earthquake imaged from inversion of GPS data. Geophys. Res. Lett. 2001, 28, 2285–2288. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.-B.; Kuo, L.-C.; Hsu, Y.-J.; Su, H.-H.; Liu, C.-C.; Hou, C.-S.; Lee, J.-F.; Lai, T.-C.; Liu, C.-C.; Liu, C.-L. Preseismic Deformation and Coseismic Displacements Associated with the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seism. Soc. Am. 2004, 91, 995–1012. [Google Scholar] [CrossRef]
- Wu, W.-N.; Hsu, S.-K.; Lo, C.-L.; Chen, H.-W.; Ma, K.-F. Plate convergence at the westernmost Philippine Sea Plate. Tectonophysics 2009, 466, 162–169. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Ma, K.-F. Investigation of the Temporal Change in Attenuation Within the Ruptured Fault Zone of the 1999 Mw7.3 Chi-Chi, Taiwan Earthquake. Pure Appl. Geophys. 2014, 172, 1291–1304. [Google Scholar] [CrossRef]
- Tatham, R.H.; McCormack, M.D. Multicomponent Seismology in Petroleum Exploration; Society of Exploration Geophysicists: Tulsa, OK, USA, 1991. [Google Scholar]
- Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R. Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone. Geophys. Res. Lett. 1997, 24, 1591–1594. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, C.-F.; Wen, S.; Chen, C.-H.; Chen, Y.-N. Exploring the Rheology of a Seismogenic Zone by Applying Seismic Variation. Appl. Sci. 2021, 11, 8847. https://doi.org/10.3390/app11198847
Liao C-F, Wen S, Chen C-H, Chen Y-N. Exploring the Rheology of a Seismogenic Zone by Applying Seismic Variation. Applied Sciences. 2021; 11(19):8847. https://doi.org/10.3390/app11198847
Chicago/Turabian StyleLiao, Chun-Fu, Strong Wen, Chau-Huei Chen, and Ying-Nien Chen. 2021. "Exploring the Rheology of a Seismogenic Zone by Applying Seismic Variation" Applied Sciences 11, no. 19: 8847. https://doi.org/10.3390/app11198847
APA StyleLiao, C. -F., Wen, S., Chen, C. -H., & Chen, Y. -N. (2021). Exploring the Rheology of a Seismogenic Zone by Applying Seismic Variation. Applied Sciences, 11(19), 8847. https://doi.org/10.3390/app11198847