Traceable PM2.5 and PM10 Calibration of Low-Cost Sensors with Ambient-like Aerosols Generated in the Laboratory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Aerosol Generation and Characterization
- Inorganic salt: aqueous solutions of ammonium nitrate (>99%, Acros Organics, Thermo Fisher Scientific, Geel, Belgium) and ammonium sulfate (>99.5%, Acros Organics, Thermo Fisher Scientific, Geel, Belgium) were nebulized with an AGK 2000 atomizer (PALAS, Karlsruhe, Germany). The aerosol had a GMDmob (geometric mean mobility diameter, number-based) of 160 nm and a GSDmob (geometric standard deviation) of 1.9. The mode of the mass-based aerodynamic size distribution was expected to lie above 300 nm [20];
- Dust particles (ISO A3 test dust, 98% SiO2, DMT, Longmont, CO, USA) were dispersed with an RBG 1000 rotating brush generator (PALAS, Germany). The aerosol had a GMDmob of 300 nm and GSDmob of 1.7. The mode of the mass-based aerodynamic size distribution was expected to be in the lower micrometer range [20];
3. Results and Discussion
3.1. PM2.5 Calibration
3.2. PM10 Calibration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Health 2021, 5196, 1–14. [Google Scholar]
- Balmes, J.R.; Eisner, M.D. Indoor and outdoor air pollution. In Murray and Nadel’s Textbook of Respiratory Medicine; Elsevier: Philadelphia, PA, USA, 2016; pp. 1331–1342.e5. ISBN 9781455733835. [Google Scholar]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the performance of low-cost sensors for air quality monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.C.; von Schneidemesser, E.; Peltier, R.E.; Lung, C.; Jones, R.; Zellweger, C.; Karppinen, A.; Penza, M.; Dye, T.; Hüglin, C.; et al. Low-Cost Sensors for the Measurement of Atmospheric Composition: Overview of Topic and Future Applications; World Metrological Organization (WMO): Geneva, Switzerland, 2018. [Google Scholar]
- Manikonda, A.; Zíková, N.; Hopke, P.K.; Ferro, A.R. Laboratory assessment of low-cost PM monitors. J. Aerosol Sci. 2016, 102, 29–40. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Kuula, J.; Mäkelä, T.; Aurela, M.; Teinilä, K.; Varjonen, S.; González, Ó.; Timonen, H. Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmos. Meas. Tech. 2020, 13, 2413–2423. [Google Scholar] [CrossRef]
- Tryner, J.; Mehaffy, J.; Miller-Lionberg, D.; Volckens, J. Effects of aerosol type and simulated aging on performance of low-cost PM sensors. J. Aerosol Sci. 2020, 150, 105654. [Google Scholar] [CrossRef]
- Tancev, G. Relevance of Drift Components and Unit-to-Unit Variability in the Predictive Maintenance of Low-Cost Electrochemical Sensor Systems in Air Quality Monitoring. Sensors 2021, 21, 3298. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, S.; Williams, R.; Hagler, G.S.W.; Rickard, J.; Brown, R.; Garver, D.; Harshfield, G.; Stauffer, P.; Mattson, E.; Judge, R.; et al. Long-term evaluation of air sensor technology under ambient conditions in Denver, Colorado. Atmos. Meas. Tech. 2018, 11, 4605–4615. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef]
- Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D.E. Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- De Vito, S.; Esposito, E.; Castell, N.; Schneider, P.; Bartonova, A. On the robustness of field calibration for smart air quality monitors. Sens. Actuators B Chem. 2020, 310, 127869. [Google Scholar] [CrossRef]
- Tancev, G.; Pascale, C. The Relocation Problem of Field Calibrated Low-Cost Sensor Systems in Air Quality Monitoring: A Sampling Bias. Sensors 2020, 20, 6198. [Google Scholar] [CrossRef]
- Kozhevnikov, D.E.; Korolev, A.S. Digital trust as a basis for the digital transformation of the enterprise and economy. In Proceedings of the 2018 11th International Conference of Management of Large-Scale System Development, Moscow, Russia, 1–3 October 2018; pp. 1–3. [Google Scholar]
- Mattila, J.; Seppala, T. Digital Trust, Platforms, and Policy, ETLA Br. (2016) 1–2. Available online: http://pub.etla.fi/ETLA-Muistio-Brief-42.pdf%0AIn (accessed on 20 March 2021).
- Kumar, H.; Singh, M.K.; Gupta, M.P.; Madaan, J. Moving towards smart cities: Solutions that lead to the Smart City Transformation Framework. Technol. Forecast. Soc. Chang. 2020, 153, 119281. [Google Scholar] [CrossRef]
- Mustapää, T.; Nikander, P.; Hutzschenreuter, D.; Viitala, R. Metrological challenges in collaborative sensing: Applicability of digital calibration certificates. Sensors 2020, 20, 4730. [Google Scholar] [CrossRef]
- Horender, S.; Auderset, K.; Quincey, P.; Seeger, S.; Nielsen Skov, S.; Dirscherl, K.; Smith, T.; Williams, K.; Aegerter, C.; Kalbermatter, D.; et al. Facility for production of ambient-like model aerosols (PALMA) in the laboratory: Application in the intercomparison of automated PM monitors with the reference gravimetric method. Atmos. Meas. Tech. 2021, 14, 1225–1238. [Google Scholar] [CrossRef]
- Alfano, B.; Barretta, L.; Del Giudice, A.; De Vito, S.; Di Francia, G.; Esposito, E.; Formisano, F.; Massera, E.; Miglietta, M.L.; Polichetti, T. A review of low-cost particulate matter sensors from the developers’ perspectives. Sensors 2020, 20, 6819. [Google Scholar] [CrossRef]
- Hueglin, C.; Gehrig, R.; Baltensperger, U.; Gysel, M.; Monn, C.; Vonmont, H. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 2005, 39, 637–651. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.C.; et al. A European aerosol phenomenology—3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Di Antonio, A.; Popoola, O.A.M.; Ouyang, B.; Saffell, J.; Jones, R.L. Developing a relative humidity correction for low-cost sensors measuring ambient particulate matter. Sensors 2018, 18, 2790. [Google Scholar] [CrossRef] [Green Version]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Ess, M.N.; Bertò, M.; Irwin, M.; Modini, R.L.; Gysel-Beer, M.; Vasilatou, K. Optical and morphological properties of soot particles generated by the miniCAST 5201 BC generator. Aerosol Sci. Technol. 2021, 55, 828–847. [Google Scholar]
- Ess, M.N.; Vasilatou, K. Characterization of a new miniCAST with diffusion flame and premixed flame options: Generation of particles with high EC content in the size range 30 nm to 200 nm. Aerosol Sci. Technol. 2019, 53, 29–44. [Google Scholar] [CrossRef]
- Keller, A.; Burtscher, H. A continuous photo-oxidation flow reactor for a defined measurement of the SOA formation potential of wood burning emissions. J. Aerosol Sci. 2012, 49, 9–20. [Google Scholar] [CrossRef]
- Ess, M.N.; Bertò, M.; Keller, A.; Gysel-Beer, M.; Vasilatou, K. Coated soot particles with tunable, well-controlled properties generated in the laboratory with a miniCAST BC and a micro smog chamber. J. Aerosol Sci. 2021, 157, 105820. [Google Scholar] [CrossRef]
- El-Zanan, H.S.; Zielinska, B.; Mazzoleni, L.R.; Hansen, D.A. Analytical Determination of the Aerosol Organic Mass-to-Organic Carbon Ratio. J. Air Waste Manag. Assoc. 2012, 59, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budde, M.; Schwarz, A.D.; Müller, T.; Laquai, B.; Streibl, N.; Schindler, G.; Köpke, M.; Riedel, T.; Dittler, A.; Beigl, M. Potential and Limitations of the Low-Cost SDS011 Particle Sensor for Monitoring Urban Air Quality. ProScience 2018, 5, 6–12. [Google Scholar]
- Liu, H.Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance assessment of a low-cost PM 2.5 sensor for a near four-month period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Tancev, G.; Grasso Toro, F. Sequential Recalibration of Wireless Sensor Networks with (Stochastic) Gradient Descent and Mobile References. Meas. Sens. 2021, 18, 100115. [Google Scholar] [CrossRef]
- Saukh, O.; Hasenfratz, D.; Thiele, L. Reducing multi-hop calibration errors in large-scale mobile sensor networks. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks, Seattle, WA, USA, 13–16 April 2015; pp. 274–285. [Google Scholar]
- Maag, B.; Zhou, Z.; Thiele, L. A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Internet Things J. 2018, 5, 4857–4870. [Google Scholar] [CrossRef] [Green Version]
Model Aerosol | T/°C | RH/% | DUT | CDUT ± 2 s/µg·m−3 | Cref. ± U/µg·m−3 | EDUT ± U |
---|---|---|---|---|---|---|
1 | 8 | 82 | AirVisual Outdoor | 157 ± 7 | 123 ± 6 | 1.28 ± 0.09 |
2 | 21 | 50 | AirVisual Outdoor | 18.4 ± 3.0 | 20.9 ± 2.2 | 0.88 ± 0.17 |
21 | 50 | 35.9 ± 4.2 | 36.6 ± 2.2 | 0.98 ± 0.13 | ||
21 | 50 | 35.9 ± 4.2 | 34.6 ± 2.1 | 1.04 ± 0.14 | ||
21 | 83 | 75.5 ± 2.2 | 70.2 ± 3.5 | 1.08 ± 0.06 | ||
21 | 66 | 83.1 ± 1.4 | 72.6 ± 5.0 | 1.14 ± 0.08 | ||
21 | 50 | 83.4 ± 1.8 | 88.5 ± 4.7 | 0.94 ± 0.06 | ||
21 | 83 | SDS-011 | 27.3 ± 4.0 | 70.2 ± 3.5 | 0.39 ± 0.06 | |
21 | 66 | 34.9 ± 5.4 | 72.6 ± 5.0 | 0.48 ± 0.08 | ||
21 | 50 | 232 ± 44 | 88.5 ± 4.7 | 2.62 ± 0.52 |
Model Aerosol | T/°C | RH/% | DUT | CDUT ± 2 s/µg·m−3 | Cref. ± U/µg·m−3 | EDUT ± U |
---|---|---|---|---|---|---|
2 | 21 | 50 | AirVisual Outdoor | 22.6 ± 1.4 | 22.6 ± 1.8 | 1.00 ± 0.10 |
21 | 50 | 59.3 ± 1.8 | 64.5 ± 5.0 | 0.92 ± 0.08 | ||
21 | 50 | 160 ± 18 | 156 ± 10 | 1.03 ± 0.14 | ||
21 | 50 | SDS011 | 15.5 ± 2.0 | 22.6 ± 1.8 | 0.69 ± 0.10 | |
21 | 50 | 43.8 ± 2.2 | 64.5 ± 5.0 | 0.68 ± 0.07 | ||
21 | 50 | 2.40 ± 0.20 | 154 ± 10 | ̴ 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horender, S.; Tancev, G.; Auderset, K.; Vasilatou, K. Traceable PM2.5 and PM10 Calibration of Low-Cost Sensors with Ambient-like Aerosols Generated in the Laboratory. Appl. Sci. 2021, 11, 9014. https://doi.org/10.3390/app11199014
Horender S, Tancev G, Auderset K, Vasilatou K. Traceable PM2.5 and PM10 Calibration of Low-Cost Sensors with Ambient-like Aerosols Generated in the Laboratory. Applied Sciences. 2021; 11(19):9014. https://doi.org/10.3390/app11199014
Chicago/Turabian StyleHorender, Stefan, Georgi Tancev, Kevin Auderset, and Konstantina Vasilatou. 2021. "Traceable PM2.5 and PM10 Calibration of Low-Cost Sensors with Ambient-like Aerosols Generated in the Laboratory" Applied Sciences 11, no. 19: 9014. https://doi.org/10.3390/app11199014
APA StyleHorender, S., Tancev, G., Auderset, K., & Vasilatou, K. (2021). Traceable PM2.5 and PM10 Calibration of Low-Cost Sensors with Ambient-like Aerosols Generated in the Laboratory. Applied Sciences, 11(19), 9014. https://doi.org/10.3390/app11199014