Weighted Centrality and Retail Store Locations in Beijing, China: A Temporal Perspective from Dynamic Public Transport Flow Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Preparation
2.2. Research Methods
2.2.1. Multiple Weighted Centrality Assessment Indices
2.2.2. Using KDE to Convert Density Values to a Grid Frame
3. Results
3.1. Distribution Characteristic of Retail Stores
3.2. Distribution Characteristics of Weighted Centrality
3.3. Relationships between Retail Store Locations and Weighted Centrality from a Temporal Perspective
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taneja, S. Technology moves in Chain store age. GeoJournal 1999, 75, 136–138. [Google Scholar]
- Roig-Tierno, N.; Baviera-Puig, A.; Buitrago-Vera, J.; Mas-Verdú, F. The retail site location decision process using GIS and the analytical hierarchy process. Appl. Geogr. 2013, 40, 191–198. [Google Scholar] [CrossRef]
- Hillier, B.; Penn, A.; Hanson, J.; Grajewski, T.; Xu, J. Natural movement: Or, configuration and attraction in urban pedestrian movement. Environ. Plan. B 1993, 20, 29–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Guldmann, J.M. Simulating urban population density with a gravity-based model. Socio-Econ. Plan. Sci. 1996, 30, 245–256. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Jiao, L.; Liu, Y.; He, J.; Ai, T. Road centrality and landscape spatial patterns in Wuhan Metropolitan Area, China. Chin. Geogr. Sci. 2015, 25, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, I.M.; Smirnov, O.A. Measuring the effect of transportation infrastructure on retail firm co-location patterns. J. Transp. Geogr. 2016, 51, 110–118. [Google Scholar] [CrossRef]
- Rui, Y.; Yang, Z.; Qian, T.; Shoaib, K.; Nan, X.; Wang, J. Network-constrained and category-based point pattern analysis for Suguo retail stores in Nanjing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 186–199. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kolko, J.; Saiz, A. Consumer city. J. Econ. Geogr. 2001, 1, 27–50. [Google Scholar] [CrossRef]
- Hernández, T.; Bennison, D. The art and science of retail location decisions. Int. J. Retail Distrib. Manag. 2000, 28, 357–367. [Google Scholar] [CrossRef]
- Laporte, G.; Nickel, S.; Gama, F. Introduction to Location Science; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar]
- Jensen, P. Network-based predictions of retail store commercial categories and optimal locations. Phys. Rev. E 2006, 74, 035101. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Saiz, R.M.; Ahedo, V.; Santos, J.I.; Gómez, S.; Galán, J.M. Identification of robust retailing location patterns with complex network approaches. Complex Intell. Syst. 2021, 6, 465. [Google Scholar]
- Hansen, W. How accessibility shapes land use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Luo, W.; Wang, F. Measures of spatial accessibility to healthcare in a GIS environment: Synthesis and a case study in Chicago region. Environ. Plan. B Plan. Des. 2003, 30, 865–884. [Google Scholar] [CrossRef] [Green Version]
- Dawson, J.A. Retail Geography; Halsted Press: New York, NY, USA, 2013. [Google Scholar]
- Casetti, E. Spatial analysis: Perspectives and prospects. Urban Geogr. 1993, 14, 526–537. [Google Scholar] [CrossRef]
- Porta, S.; Crucitti, P.; Latora, V. The network analysis of urban streets: A dual approach. Phys. A Stat. Mech. Appl. 2006, 369, 853–866. [Google Scholar] [CrossRef] [Green Version]
- Porta, S.; Strano, E.; Iacoviello, V.; Messora, R.; Latora, V.; Cardillo, A.; Wang, F.; Scellato, S. Street centrality and densities of retail and services in Bologna, Italy. Environ. Plan. B Plan. Des. 2009, 36, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Omer, I.; Goldblatt, R. Spatial patterns of retail activity and street network structure in new and traditional Israeli cities. Urban Geogr. 2016, 37, 629–649. [Google Scholar] [CrossRef]
- Wang, S.; Xu, G.; Guo, Q. Street centralities and land use intensities based on points of interest (poi) in Shenzhen, China. ISPRS Int. J. Geo-Inf. 2018, 7, 425. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhou, S.; Wen, P. The relationship between centrality and land use patterns: Empirical evidence from five Chinese metropolises. Comput. Environ. Urban Syst. 2019, 78, 101356. [Google Scholar] [CrossRef]
- Wang, F.; Chen, C.; Xiu, C.; Zhang, P. Location analysis of retail stores in Changchun, China: A street centrality perspective. Cities 2014, 41, 54–63. [Google Scholar] [CrossRef]
- Lin, G.; Chen, X.; Liang, Y. The location of retail stores and street centrality in Guangzhou, China. Appl. Geogr. 2018, 100, 12–20. [Google Scholar] [CrossRef]
- Han, Z.; Cui, C.; Miao, C.; Wang, H.; Chen, X. Identifying spatial patterns of retail stores in road network structure. Sustainability 2019, 11, 4539. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Stability in competition. Econ. J. 1929, 39, 41–57. [Google Scholar] [CrossRef]
- D’Aspremont, C.; Gabszewicz, J.J.; Thisse, J.-F. On hotelling’s “Stability in Competition”. Econometrica 1979, 47, 1145–1150. [Google Scholar] [CrossRef] [Green Version]
- Malleson, N. Building temporal dynamism into applied GIS research. Appl. Spat. Anal. Policy 2019, 12, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Kwan, M.P. Space-time accessibility measures: A geocomputational algorithm with a focus on the feasible opportunity set and possible activity duration. J. Geogr. Syst. 2003, 5, 71–91. [Google Scholar] [CrossRef]
- Newing, A.; Clarke, G.P.; Clarke, M. Developing and applying a disaggregated retail location model with extended retail demand estimations. Geogr. Anal. 2015, 47, 219–239. [Google Scholar] [CrossRef]
- Geuens, M.; Brengman, M.; S’Jegers, R. Food retailing, now and in the future. a consumer perspective. J. Retail. Consum. Serv. 2003, 10, 241–251. [Google Scholar] [CrossRef]
- Castillo-Manzano, J.I.; López-Valpuesta, L. Urban retail fabric and the metro: A complex relationship. Lessons from middle-sized Spanish cities. Cities 2009, 26, 141–147. [Google Scholar] [CrossRef]
- Cervero, R.; Kang, C.D. Bus rapid transit impacts on land uses and land values in Seoul, Korea. Transp. Policy 2011, 18, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Tsou, K.; Cheng, H. The effect of multiple urban network structures on retail patterns–A case study in Taipei, Taiwan. Cities 2013, 32, 13–23. [Google Scholar] [CrossRef]
- Ganning, J.; Miller, M.M. Transit oriented development and retail: Is variation in success explained by a gap between theory and practice? Transp. Res. Part D Transp. Environ. 2020, 85, 102357. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Y.; Gao, Y.; Liu, Y. Understanding urban traffic-flow characteristics: A rethinking of between ness centrality. Environ. Plan. B Plan. Des. 2013, 40, 135–153. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Ujang, N.; Bin Hamid, H.; Manan, M.S.A.; Li, R.; Albadareen, S.S.M.; Nochian, A.; Wu, J. Application of complex networks theory in urban traffic network researches. Netw. Spat. Econ. 2019, 19, 1281–1317. [Google Scholar] [CrossRef]
- Wang, L.-N.; Wang, K.; Shen, J.-L. Weighted complex networks in urban public transportation: Modeling and testing. Phys. A Stat. Mech. Appl. 2020, 545, 123498. [Google Scholar] [CrossRef]
- Fransen, K.; Neutens, T.; Farber, S.; De Maeyer, P.; Deruyter, G.; Witlox, F. Identifying public transport gaps using time-dependent accessibility levels. J. Transp. Geogr. 2015, 48, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Boisjoly, G.; El-Geneidy, A. Daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures. J. Transp. Geogr. 2016, 52, 73–81. [Google Scholar] [CrossRef]
- Gan, Z.; Feng, T.; Wu, Y.; Yang, M.; Timmermans, H. Station-based average travel distance and its relationship with urban form and land use: An analysis of smart card data in Nanjing City, China. Transp. Policy 2019, 79, 137–154. [Google Scholar] [CrossRef]
- Lin, J.; Ban, Y. Complex network topology of transportation systems. Transp. Rev. 2013, 33, 658–685. [Google Scholar] [CrossRef]
- Kuby, M.; Tierney, S.; Roberts, T.; Upchurch, C. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies; NASA/CR-2005-213522; Arizona State University: Tempe, AZ, USA, 2005. [Google Scholar]
- Soh, H.; Lim, S.; Zhang, T.; Tse, C.-K. Weighted complex network analysis of travel routes on the Singapore public transportation system. Phys. A Stat. Mech. Appl. 2010, 389, 5852–5863. [Google Scholar] [CrossRef]
- Huang, A.; Xiong, J.; Shen, J.; Guan, W. Evolution of weighted complex bus transit networks with flow. Int. J. Modern Phys. C 2015, 27, 1650064. [Google Scholar] [CrossRef]
- Meng, Y.; Tian, X.; Li, Z.; Zhou, W.; Zhou, Z.; Zhong, M. Exploring node importance evolution of weighted complex networks in urban rail transit. Phys. A Stat. Mech. Appl. 2020, 558, 124925. [Google Scholar] [CrossRef]
- Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks: Conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Barrat, A.; Barthélemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Netw. 2010, 32, 245–251. [Google Scholar] [CrossRef]
- Sabidussi, G. The centrality index of a graph. Psychometrika 1966, 31, 581–603. [Google Scholar] [CrossRef]
- Sun, X.; Wandelt, S.; Linke, F. Temporal evolution analysis of the European air transportation system: Air navigation route network and airport network. Transportmetr. B Transp. Dyn. 2015, 3, 153–168. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Quantitative Geography: Perspectives on Spatial Data Analysis; Sage Publications: London, UK, 2000. [Google Scholar]
- Wang, F. Quantitative Methods and Applications in GIS; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
Category | Sub-Category | Total Counts |
---|---|---|
Shopping malls | Shopping Plaza, Shopping Center, etc. | 768 |
Supermarkets | Carrefour, Wal-Mart, Hualian, Watsons, etc. | 12,756 |
Convenience stores | 7-ELEVEN, Circle K, etc. | 15,027 |
Specialty stores | Sports Store, Clothing Store, Franchise Store, Personal Care Items Shop, etc. | 27,222 |
Electronics stores | Home Electronics Hypermarket, Digital Electronics, Mobile Handsets Sales, etc. | 7894 |
Building material stores | Furniture Store, Kitchen Supply, Hardware Store, Lighting, Porcelain Market, etc. | 27,576 |
Time | Card Number | Type | Line Number | Vehicle Number | Boarding Station | Departure Station |
---|---|---|---|---|---|---|
20150813091012 | 46,343,397 | 1 | 751 | 95,740 | 17 | 11 |
20150813112013 | 80,245,649 | 1 | 609 | 83,601 | 5 | 8 |
Retail Types | Degree | Betweenness | Closeness |
---|---|---|---|
Shopping malls | 0.770 | 0.785 | 0.580 |
Supermarkets | 0.722 | 0.625 | 0.718 |
Convenience stores | 0.812 | 0.747 | 0.740 |
Electronics stores | 0.716 | 0.636 | 0.685 |
Specialty stores | 0.553 | 0.485 | 0.413 |
Building material stores | 0.261 | 0.211 | 0.371 |
Centrality | Retail Types | 7:00–9:00 | 9:00–11:00 | 11:00–13:00 | 13:00–15:00 | 15:00–17:00 | 17:00–19:00 | 19:00–21:00 |
---|---|---|---|---|---|---|---|---|
degree | Shopping mall | 0.763 | 0.786 | 0.775 | 0.772 | 0.768 | 0.768 | 0.784 |
Supermarket | 0.723 | 0.711 | 0.717 | 0.714 | 0.718 | 0.717 | 0.718 | |
Convenience store | 0.807 | 0.810 | 0.812 | 0.809 | 0.809 | 0.808 | 0.812 | |
Specialty store | 0.545 | 0.546 | 0.562 | 0.563 | 0.561 | 0.552 | 0.538 | |
Electronics store | 0.715 | 0.711 | 0.710 | 0.708 | 0.709 | 0.710 | 0.721 | |
Building material store | 0.266 | 0.253 | 0.252 | 0.248 | 0.253 | 0.257 | 0.264 | |
betweenness | Shopping mall | 0.771 | 0.786 | 0.814 | 0.811 | 0.815 | 0.754 | 0.775 |
Supermarket | 0.643 | 0.615 | 0.637 | 0.635 | 0.648 | 0.572 | 0.605 | |
Convenience store | 0.751 | 0.738 | 0.762 | 0.763 | 0.774 | 0.710 | 0.724 | |
Specialty store | 0.473 | 0.460 | 0.506 | 0.511 | 0.515 | 0.443 | 0.453 | |
Electronics store | 0.638 | 0.620 | 0.650 | 0.643 | 0.656 | 0.581 | 0.618 | |
Building material store | 0.222 | 0.215 | 0.215 | 0.208 | 0.220 | 0.177 | 0.204 | |
closeness | Shopping mall | 0.570 | 0.589 | 0.611 | 0.616 | 0.628 | 0.622 | 0.640 |
Supermarket | 0.715 | 0.727 | 0.741 | 0.744 | 0.748 | 0.742 | 0.750 | |
Convenience store | 0.733 | 0.749 | 0.766 | 0.770 | 0.776 | 0.769 | 0.783 | |
Specialty store | 0.406 | 0.420 | 0.439 | 0.443 | 0.454 | 0.444 | 0.455 | |
Electronics store | 0.680 | 0.691 | 0.704 | 0.708 | 0.713 | 0.709 | 0.718 | |
Building material store | 0.373 | 0.372 | 0.369 | 0.371 | 0.368 | 0.371 | 0.368 |
Centrality | Retail Types | 7:00–9:00 | 9:00–11:00 | 11:00–13:00 | 13:00–15:00 | 15:00–17:00 | 17:00–19:00 | 19:00–21:00 |
---|---|---|---|---|---|---|---|---|
degree | Shopping mall | 0.747 | 0.747 | 0.742 | 0.747 | 0.750 | 0.750 | 0.763 |
Supermarket | 0.749 | 0.733 | 0.724 | 0.719 | 0.720 | 0.727 | 0.734 | |
Convenience store | 0.817 | 0.811 | 0.806 | 0.805 | 0.806 | 0.810 | 0.820 | |
Specialty store | 0.540 | 0.554 | 0.559 | 0.563 | 0.564 | 0.557 | 0.550 | |
Electronics store | 0.733 | 0.717 | 0.712 | 0.709 | 0.709 | 0.719 | 0.727 | |
Building material store | 0.294 | 0.270 | 0.260 | 0.253 | 0.253 | 0.266 | 0.277 | |
betweenness | Shopping mall | 0.752 | 0.758 | 0.769 | 0.753 | 0.729 | 0.766 | 0.769 |
Supermarket | 0.688 | 0.694 | 0.703 | 0.655 | 0.639 | 0.667 | 0.694 | |
Convenience store | 0.765 | 0.776 | 0.790 | 0.754 | 0.734 | 0.770 | 0.777 | |
Specialty store | 0.486 | 0.504 | 0.556 | 0.587 | 0.581 | 0.564 | 0.519 | |
Electronics store | 0.672 | 0.677 | 0.685 | 0.644 | 0.630 | 0.657 | 0.683 | |
Building material store | 0.266 | 0.267 | 0.266 | 0.220 | 0.213 | 0.226 | 0.256 | |
closeness | Shopping mall | 0.577 | 0.588 | 0.601 | 0.610 | 0.622 | 0.624 | 0.640 |
Supermarket | 0.726 | 0.728 | 0.735 | 0.740 | 0.744 | 0.744 | 0.752 | |
Convenience store | 0.745 | 0.749 | 0.758 | 0.764 | 0.770 | 0.771 | 0.783 | |
Specialty store | 0.413 | 0.423 | 0.433 | 0.441 | 0.451 | 0.451 | 0.460 | |
Electronics store | 0.688 | 0.691 | 0.699 | 0.704 | 0.710 | 0.711 | 0.719 | |
Building material store | 0.375 | 0.368 | 0.367 | 0.366 | 0.364 | 0.366 | 0.366 |
Store Types | Weekdays | Weekends | ||||
---|---|---|---|---|---|---|
Period | Centrality | Coefficient | Period | Centrality | Coefficient | |
Shopping malls | 19:00–21:00 | Betweenness | 0.815 | 11:00–13:00 | Betweenness | 0.769 |
Supermarkets | 19:00–21:00 | Closeness | 0.750 | 19:00–21:00 | Closeness | 0.752 |
Convenience stores | 19:00–21:00 | Degree | 0.812 | 19:00–21:00 | Degree | 0.820 |
Specialty stores | 11:00–13:00 | Degree | 0.563 | 13:00–15:00 | Betweenness | 0.587 |
Electronics stores | 19:00–21:00 | Degree | 0.721 | 7:00–9:00 | Degree | 0.733 |
Building material stores | 7:00–9:00 | Closeness | 0.373 | 7:00–9:00 | Closeness | 0.375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, C.; Dai, T.; Zhao, P.; Ding, T. Weighted Centrality and Retail Store Locations in Beijing, China: A Temporal Perspective from Dynamic Public Transport Flow Networks. Appl. Sci. 2021, 11, 9069. https://doi.org/10.3390/app11199069
Liao C, Dai T, Zhao P, Ding T. Weighted Centrality and Retail Store Locations in Beijing, China: A Temporal Perspective from Dynamic Public Transport Flow Networks. Applied Sciences. 2021; 11(19):9069. https://doi.org/10.3390/app11199069
Chicago/Turabian StyleLiao, Cong, Teqi Dai, Pengfei Zhao, and Tiantian Ding. 2021. "Weighted Centrality and Retail Store Locations in Beijing, China: A Temporal Perspective from Dynamic Public Transport Flow Networks" Applied Sciences 11, no. 19: 9069. https://doi.org/10.3390/app11199069
APA StyleLiao, C., Dai, T., Zhao, P., & Ding, T. (2021). Weighted Centrality and Retail Store Locations in Beijing, China: A Temporal Perspective from Dynamic Public Transport Flow Networks. Applied Sciences, 11(19), 9069. https://doi.org/10.3390/app11199069