Integral-Type Edge-Event- and Edge-Self-Triggered Synchronization to Multi-Agent Systems with Lur’e Nonlinear Dynamics
Abstract
:1. Introduction
- 1.
- The dominant motive of this work is to design integral-type edge-event- and edge-self-triggered control strategies for Lur’e uncertain nonlinear systems to seek novel scheduling policies of active sensors. Here, only relative states are employed, while absolute state information is uninvolved. These combined edge-based control policies can provide another approach, where absolute state information is not easily available [16,17,19,20,23].
- 2.
- A distributed integral-type edge-event-triggered control algorithm is designed in the proposed control strategies, which relaxes the setting of the measurement error in the traditional event-triggered strategy [13,14,15,16,17,19,20,21,22,23,25] that needs to meet the trigger conditions at all times. The application of Barbalat’s Lemma in proof guarantees the convergence. Compared to the studies on distributed integral-type event-triggered control in [33,34], our results on edge states related to each agent are evaluated asynchronously, based on nonlinear dynamic models.
- 3.
2. Preliminaries
2.1. Preliminaries on Graph Theory
2.2. Problem Formulation
3. Integral-Type Edge-Event-Triggered Policy
4. Integral-Type Edge-Self-Triggered Policy
Algorithm 1: Integral-Type Edge-Self-Triggered Control Algorithm |
|
5. Simulations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Olfati-Saber, R.; Murray, R.M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 2004, 49, 1520–1533. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Gao, H.; Zou, W.; Kurths, J. Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Trans. Cybern. 2013, 43, 358–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Qin, J.; Yu, C. ISS method for coordination control of nonlinear dynamical agents under directed topology. IEEE Trans. Cybern. 2014, 44, 1832–1845. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Wang, X.; Zheng, Z. Convergence analysis using the edge Laplacian: Robust consensus of nonlinear multi-agent systems via iss method. Int. J. Robust Nonlinear Control 2016, 26, 1051–1072. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Lin, Z.; Garcia, A. Distributed synchronization control of multiagent systems with unknown nonlinearities. IEEE Trans. Cybern. 2016, 46, 325–338. [Google Scholar] [CrossRef]
- He, W.; Zhang, B.; Han, Q.L.; Qian, F.; Kurths, J.; Cao, J. Leader-following consensus of nonlinear mulitiagent systems with stochastic sampling. IEEE Trans. Cybern. 2017, 47, 327–338. [Google Scholar] [PubMed]
- Dai, M.-Z.; Xiao, F.; Wei, B. Consensus analysis for leader-followingmulti-agent systems with second-order individual dynamics and arbitrarysampling. Int. J. Robust Nonlinear Control 2017, 27, 4348–4362. [Google Scholar] [CrossRef]
- Fu, W.; Qin, J.; Shi, Y.; Zheng, W.X.; Kang, Y. Resilient consensus of discrete-time complex cyber-physical networks under deception attacks. IEEE Trans. Ind. Inform. 2019, 16, 4868–4877. [Google Scholar] [CrossRef]
- Liu, J.; Dai, M.-Z.; Zhang, C.; Wu, J. Edge-event-triggered synchronization for multi-agent systems with nonlinear controller outputs. Appl. Sci. 2020, 10, 5250. [Google Scholar] [CrossRef]
- Jia, W.; Wang, J. Observer-based distributed fault detection for heterogeneous multi-agent systems. Appl. Sci. 2020, 10, 7466. [Google Scholar] [CrossRef]
- Kowalczyk, W. Formation control and distributed goal assignment for multi-agent non-holonomic systems. Appl. Sci. 2019, 9, 1311. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Ma, Q.; Yu, X.; Wang, L. On synchronization of dynamical systems over directed switching topologies: An algebraic and geometric perspective. IEEE Trans. Autom. Control 2020, 65, 5083–5098. [Google Scholar] [CrossRef] [Green Version]
- Åström, K.J.; Bernhardsson, B. Comparison of periodic and event based sampling for first-order stochastic systems. In Proceedings of the 14th IFAC World Congress, Beijing, China, 5–9 July 1999; pp. 5006–5011. [Google Scholar]
- Tabuada, P. Event-triggered real-time scheduling of stabilizing control task. IEEE Trans. Autom. Control 2007, 52, 1680–1685. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Antsaklis, P.J. Output synchronization of networked passive systems with event-driven communication. IEEE Trans. Autom. Control 2014, 59, 750–756. [Google Scholar] [CrossRef]
- Meng, X.; Chen, T. Event based agreement protocols for multi-agent networks. Automatica 2013, 49, 2125–2132. [Google Scholar] [CrossRef]
- Guo, G.; Ding, L.; Han, Q.-L. A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. Automatica 2014, 50, 1489–1496. [Google Scholar] [CrossRef]
- Ding, L.; Han, Q.-L.; Ge, X.; Zhang, X.-M. An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybern. 2018, 48, 1110–1123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, L.; Hao, F.; Wang, L. Leader-following consensus for linear and Lipschitz nonlinear multiagent systems with quantized communication. IEEE Trans. Cybern. 2017, 47, 1970–1982. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Y.; Pan, Y.; Su, H.; Tang, Y. Event-triggered control for consensus problem in multi-agent systems with quantized relative state measurements and external disturbance. IEEE Trans. Circuits Syst. I Reg. Pap. 2018, 65, 2232–2242. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Hao, F.; Wang, L. Periodic event-triggered consensus with quantization. IEEE Trans. Circuits Syst. II Exp. Briefs 2016, 63, 406–410. [Google Scholar] [CrossRef]
- Wu, Z.-G.; Xu, Y.; Pan, Y.-J.; Shi, P.; Wang, Q. Event-triggered pinning control for consensus of multiagent systems with quantized information. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1929–1938. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, N.; Anderson, B.D.O.; Duan, Z. Event-based multiagent consensus control: Zeno-free triggering via Lp signals. IEEE Trans. Cybern. 2020, 50, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.-Z.; Ahn, C.K.; Wu, J.; Zhang, C.; Gui, M. Performance adjustable event-triggered synchronization policies to nonlinear multiagent systems. IEEE Syst. J. 2021. [Google Scholar] [CrossRef]
- Liu, X.; Ge, S.S.; Goh, C.; Li, Y. Event-triggered coordination for formation tracking control in constrained space with limited communication. IEEE Trans. Cybern. 2019, 49, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Velasco, M.; Fuertes, J.M.; Marti, P. The self triggered task model for real-time control systems. In Proceedings of the 24th IEEE RTSS, Cancun, Mexico, 3–5 December 2003; pp. 67–70. [Google Scholar]
- Anta, A.; Tabuada, P. To sample or not to sample: Self-triggered control for nonlinear systems. IEEE Trans. Autom. Control 2010, 55, 2030–2042. [Google Scholar] [CrossRef] [Green Version]
- Defoort, M.; Gennaro, S.D.; Djemai, M. Self-triggered control for multi-agent systems with unknown non-linear inherent dynamics. IET Control Theory A 2014, 8, 2266–2275. [Google Scholar] [CrossRef]
- Hashimoto, K.; Adachi, S.; Dimarogonas, D.V. Distributed aperiodic model predictive control for multi-agent systems. IET Control Theory A 2015, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Adaldo, A.; Liuzza, D.; Dimarogonas, D. Cloud-supported formation control of second-order multi-agent systems. IEEE Trans. Control Netw. Syst. 2018, 5, 1563–1574. [Google Scholar] [CrossRef]
- Girard, A. Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control 2013, 60, 1992–1997. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.H.; Ghodrat, M.; Marquez, H.J. Integral-based event-triggered control scheme for a general class of non-linear systems. IET Control Theory A 2015, 9, 1982–1988. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L. Distributed integral-type event-triggered synchronization of multiagent systems. Int. J. Robust Nonlinear Control 2018, 9, 4175–4187. [Google Scholar] [CrossRef]
- Zhang, Z.; Lunze, J.; Wang, L. Integral-based event-triggered control for multi-agent systems with general linear dynamics. Int. J. Control 2020, 93, 1005–1014. [Google Scholar] [CrossRef]
- Liao, X.; Chen, G. Chaos synchronization of general Lur’e systems via time-delay feedback control. Int. J. Bifur. Chaos 2003, 13, 207–213. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Y.; Zhou, S. Lag synchronization of chaotic Lur’e systems via replacing variables control. Int. J. Bifur. Chaos 2005, 15, 617–635. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.-G.; Hill, D.J. Global asymptotical synchronization of chaotic Lur’e systems using sampled data: A linear matrix inequality approach. IEEE Trans. Circuits Syst. II Exp. Briefs 2008, 55, 586–590. [Google Scholar]
- Wen, G.; Yu, W.; Hu, G. Distributed node-to-node consensus of multi-agent systems with Lur’e node dynamics. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013; pp. 7314–7319. [Google Scholar]
- Zhao, Y.; Duan, Z.; Wen, G.; Chen, G. Robust consensus tracking of multi-agent systems with uncertain Lur’e-type non-linear dynamics. IET Control Theory A 2013, 7, 1249–1260. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, T.; Gao, H. Synchronous hybrid event- and time-driven consensus in multiagent networks with time delays. IEEE Trans. Cybern. 2016, 46, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Liu, L.; Feng, G. Consensus of linear multi-agent systems by distributed event-triggered strategy. IEEE Trans. Cybern. 2016, 46, 148–157. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, F.; Ma, J. Model-based edge-event-triggered containment control under directed topologies. IEEE Trans. Cybern. 2019, 49, 2556–2567. [Google Scholar] [CrossRef] [PubMed]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Zhang, F.; Mazo, J.M.; Wouw, N.V.D. Absolute stabilization of Lur’e systems under event-triggered feedback. IFAC PapersOnLine 2017, 50, 15301–15306. [Google Scholar] [CrossRef]
Agents | Total Numbers | ||||
---|---|---|---|---|---|
The mechanism in (29) | 230 | 200 | 258 | 156 | 844 |
The mechanism in (5) | 86 | 86 | 127 | 53 | 352 |
Algorithm 1 | 131 | 138 | 132 | 128 | 529 |
Agents | Total Numbers | ||||
---|---|---|---|---|---|
The mechanism in (29) | 0.087 | 0.100 | 0.078 | 0.128 | 0.095 |
The mechanism in (5) | 0.233 | 0.233 | 0.157 | 0.377 | 0.227 |
Algorithm 1 | 0.153 | 0.145 | 0.152 | 0.156 | 0.151 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, M.; Liu, J.; Wu, J.; Zhang, C.; Zhao, D. Integral-Type Edge-Event- and Edge-Self-Triggered Synchronization to Multi-Agent Systems with Lur’e Nonlinear Dynamics. Appl. Sci. 2021, 11, 9137. https://doi.org/10.3390/app11199137
Dai M, Liu J, Wu J, Zhang C, Zhao D. Integral-Type Edge-Event- and Edge-Self-Triggered Synchronization to Multi-Agent Systems with Lur’e Nonlinear Dynamics. Applied Sciences. 2021; 11(19):9137. https://doi.org/10.3390/app11199137
Chicago/Turabian StyleDai, Mingzhe, Jie Liu, Jin Wu, Chengxi Zhang, and Dangjun Zhao. 2021. "Integral-Type Edge-Event- and Edge-Self-Triggered Synchronization to Multi-Agent Systems with Lur’e Nonlinear Dynamics" Applied Sciences 11, no. 19: 9137. https://doi.org/10.3390/app11199137
APA StyleDai, M., Liu, J., Wu, J., Zhang, C., & Zhao, D. (2021). Integral-Type Edge-Event- and Edge-Self-Triggered Synchronization to Multi-Agent Systems with Lur’e Nonlinear Dynamics. Applied Sciences, 11(19), 9137. https://doi.org/10.3390/app11199137