Potato Starch Extrusion and Roasting with Apple Distillery Wastewater as a New Method for Resistant Starch Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Modified Starch Preparations
2.3. Qualitative and Quantitative Analyses of Starch Esters with the High-Performance Liquid Chromatography (HPLC) Technique
2.4. Swelling Power and Solubility of Starch Preparations in Water Having a Temperature of 80 °C
2.5. Determination of the Characteristics of Phase Transitions of Starch Preparations with Differential Scanning Calorimetry (DSC)
2.6. Rheological Properties of Starch Pastes
2.7. Color Determination of Starch Preparations
2.8. Resistance of Starch Preparations to the Action of Amyloglucosidase
2.9. Data Computation and Presentation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leszczyński, W. Resistant starch—Classification, structure, production. Pol. J. Food Nutr. Sci. 2004, 54, 37–50. [Google Scholar]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié–A–Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity. A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [Green Version]
- Nugent, A.P. Health properties of resistant starch. Nutr. Bull. 2005, 30, 27–54. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jay-Lin, J.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4/6, 587–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashogbon, A.O.; Akintayo, E.T. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch Stärke 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Ačkar, D.; Babić, J.; Jozinović, A.; Miličević, B.; Jokić, S.; Miličević, R.; Rajič, M.; Šubarić, D. Starch Modification by Organic Acids and Their Derivatives: A Review. Molecules 2015, 20, 19554–19570. [Google Scholar] [CrossRef] [Green Version]
- Diakou, P.; Svanella, L.; Raymond, P.; Gaudillère, J.P.; Moing, A. Phosphoenolpyruvate carboxylase during grape berry development: Protein level, enzyme activity and regulation. Aust. J. Plant Physiol. 2000, 27, 221–229. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Abbas, M.; Boyce, M.C.; Saari, N. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int. J. Mol. Sci. 2012, 13, 1380–1392. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Ma, B.; Zhao, S.; Wu, B.; Wang, D.; Peng, Q.; Owiti, A.; Fang, T.; Liao, L.; Ogutu, C.; Korban, S.S.; et al. Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple. Tree Genet. Genomes 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Cornille, A.; Gladieux, P.; Smulders, M.J.M.; Roldán–Ruiz, I.; Laurens, F.; Le Cam, B.; Nersesyan, A.; Clavel, J.; Olonova, M.; Feugey, L.; et al. New insight into the history of domesticated apple: Secondary contribution of the european wild apple to the genome of cultivated varieties. PLoS Genet. 2012, 8, e1002703. [Google Scholar] [CrossRef] [Green Version]
- Zięba, T.; Solińska, D.; Kapelko-Żeberska, M.; Gryszkin, A.; Babić, J.; Aćkar, D.; Hernández, F.; Lonćarić, A.; Šubarić, D.; Jozinović, A. Properties of Potato Starch Roasted with Apple Distillery Wastewater. Polymers 2020, 12, 1668. [Google Scholar] [CrossRef]
- Zdybel, E.; Zięba, T.; Tomaszewska-Ciosk, E.; Rymowicz, W. Effect of the esterification of starch with a mixture of carboxylic acids from Yarrowia lipolitica fermentation broth on its selected properties. Polymers 2020, 12, 1383. [Google Scholar] [CrossRef]
- Richter, M.; Augustat, S.; Schierbaum, F. Ausgewählte Methoden der Stärkechemie: Isolierung, Charakterisierung und Analytik von Stärkepolysacchariden; Wissenschaftliche Verlagsgesellschaft m.b.H: Stuttgart, Germany, 1968; p. 208. [Google Scholar]
- Zięba, T.; Szumny, A.; Kapelko, M. Properties of retrograded and acetylated starch preparations. Part 1. Structure, susceptibility to amylase, and pasting characteristics. LWT Food Sci. Technol. 2011, 44, 1314–1320. [Google Scholar] [CrossRef]
- Zięba, T.; Kapelko, M.; Jacewicz, K.; Styczyńska, M. Properties of extruded starch modified with phosphorus and glycin. Pol. J. Food Nutr. Sci. 2007, 57, 633–638. [Google Scholar]
- Zięba, T.; Kapelko, M.; Gryszkin, A. Selected properties of potato starch subjected to multiple physical and chemical modifications. Pol. J. Food Nutr. Sci. 2007, 57, 639–645. [Google Scholar]
- Gryszkin, A.; Zięba, T.; Kapelko-Żeberska, M. Hydrothermal modification of wheat starch. Part 2. Thermal characteristics of pasting and rheological properties of pastes. J. Cereal Sci. 2016, 69, 194–198. [Google Scholar] [CrossRef]
- Clydesdale, F.M. Colorometry—Methodology and Applications. CRC Crit. Rev. Food Sci. Nutr. 1978, 10, 243–301. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Yu, L.; Liu, H.; Chen, L. Starch Modification Using Reactive Extrusion. Starch Stärke 2006, 58, 131–139. [Google Scholar] [CrossRef]
- Menzel, C.; Olsson, E.; Plivelic, T.S.; Andersoon, R.; Johansson, C.; Kuktaite, R.; Jarnstrom, L.; Koch, K. Molecular structure of citric acid cross–linked starch films. Carbohydr. Polym. 2013, 96, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Moad, G. Chemical modification of starch by reactive extrusion. Prog. Polym. Sci. 2011, 36, 218–237. [Google Scholar] [CrossRef]
- Willet, J.L.; Shoren, R.L. Processing and properties of extruded starchpolymer foams. Polymers 2002, 43, 5935–5947. [Google Scholar] [CrossRef]
- Lu, Z.H.; Donner, E.; Liu, Q. Effect of roasted peaflour/starch and encapsulated pea starch incorporationon thein vitrostarch digestibility of pea breads. Food Chem. 2018, 245, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kapelko–Żeberska, M.; Zięba, T.; Pietrzak, W.; Gryszkin, A. Effect of citric acid esterification conditions on the properties of the obtained resistant starch. Int. J. Food Sci. Technol. 2016, 51, 1647–1654. [Google Scholar] [CrossRef]
- Shi, M.; Gao, Q.; Liu, Y. Changes in the Structure and Digestibility of Wrinkled Pea Starch with Malic Acid Treatment. Polymers 2018, 10, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapelko, M.; Zięba, T.; Gryszkin, A.; Styczyńska, M.; Wilczak, A. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase. Carbohydr. Polym. 2013, 97, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–992. [Google Scholar] [CrossRef]
- Tomasik, P.; Wiejak, S.; Pałasiński, M. The thermal decomposition of carbohydrates. Part II. The decomposition of starch. Adv. Carbohydr. Chem. Biochem. 1989, 47, 279–343. [Google Scholar]
- Kim, J.H.; Tanhehco, E.J.; Ng, P.K.W. Effect of extrusion conditions on resistant starch formation from pastry wheat flour. Food Chem. 2006, 99, 718–723. [Google Scholar] [CrossRef]
- Gryszkin, A.; Zięba, T.; Kapelko, M.; Buczek, A. Effect of thermal modifications of potato starch on its selected properties. Food Hydrocoll. 2014, 40, 122–127. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N. Studies on the morphological, thermal and rheological properties of starch separated from same Indian potato cultivars. Food Chem. 2001, 75, 67–77. [Google Scholar] [CrossRef]
- Forssell, P.M.; Mikkilä, J.M.; Moates, G.K.; Parker, R. Phase and glasstransition behaviour of concentrated barley starch–glicerol–water mixtures, a model for thermoplastic starch. Carbohydr. Polym. 1997, 34, 275–282. [Google Scholar] [CrossRef]
- Ohkuma, K.; Matsuda, I.; Katta, Y.; Hanno, Y. Pyrolysis of starch and its digestibility by enzymes–Characterization of indigestible dextrin. Denpun Kagaku 1990, 37, 107–114. [Google Scholar]
- Afolabi, T.A.; Olu–Owolabi, B.I.; Adebowale, K.O.; Lawal, O.S.; Akintayo, C.O. Functional and tableting properties of acetylated and oxidised finger millet Eleusine coracana starch. Starch Stärke 2012, 64, 326–337. [Google Scholar] [CrossRef]
- Bello–Pérez, L.A.; Agama–Acevedo, E.; Zamudio–Flores, P.B.; Mendez–Montealvo, G.; Rodriguez–Ambriz, S.L. Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT Food Sci. Technol. 2010, 43, 1434–1440. [Google Scholar] [CrossRef]
- Kapelko, M.; Zięba, T. Właściwości skrobi ekstrudowanej modyfikowanej glicyną. Żywność Nauka Technol. Jakość 2007, 54, 21–30. [Google Scholar]
- Wang, S.; Copeland, L. Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Food Sci. Nutr. 2015, 55, 1081–1097. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Luo, S.; Liu, W.; Chen, J.; Zeng, Z.; Liu, C. Properties of Starch after Extrusion: A Review. Starch Stärke 2018, 70, 1700110. [Google Scholar] [CrossRef]
- Kumar, L.; Brennan, M.A.; Mason, S.L.; Zheng, H.; Brenna, C.S. Rheological, pasting and microstructural studies of dairy protein–starch interactions and their application in extrusion-based products: A review. Starch Stärke 2017, 69, 160–273. [Google Scholar] [CrossRef]
- Sengar, G.; Sharma, H.K. Food caramels: A review. J. Food Sci. Technol. 2014, 51, 1686–1696. [Google Scholar] [CrossRef] [Green Version]
- Martins, S.I.F.S.; Jongen, W.M.F.; Boekel, M.A.J.S. A review of Maillard reaction in food and implications to kinetic modeling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Fuentes-Zaragoza, E.; Riquelme-Navarrete, M.J.; Sánchez-Zapata, E.; Pérez-Álvarez, J.A. Resistant starch as functional ingredient: A review. Food Res. Int. 2010, 43, 931–942. [Google Scholar] [CrossRef]
- Francis, J.F. Wiley Encyclopedia of Food Science and Technology, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1999. [Google Scholar]
- Harrison, J.R. International Regulation of Natural Health Products; Universal Publishers: Boca Raton, FL, USA, 2008. [Google Scholar]
Extrusion and Roasting Temperature (°C) | Initial Pasting Temperature (°C) | LSD | Final Pasting Temperature (°C) | LSD | Heat of Phase Transition (J/g) | LSD | |||
---|---|---|---|---|---|---|---|---|---|
Preparation Type | Preparation Type | Preparation Type | |||||||
E | EW | E | EW | E | EW | ||||
80/80 | 42.72 | 45.45 | 0.19 | 75.65 | 74.40 | 1.14 | 4.14 | 5.04 | 0.13 |
100/80 | 44.71 | 46.17 | 74.05 | 74.74 | 5.20 | 1.41 | |||
120/80 | 43.59 | 44.54 | 71.78 | 71.59 | 5.72 | 2.54 | |||
140/80 | 44.09 | 43.93 | 72.81 | 74.50 | 5.34 | 3.24 | |||
80/100 | 42.95 | 46.70 | 71.65 | 75.35 | 4.58 | 4.29 | |||
100/100 | 45.29 | 45.14 | 74.74 | 77.31 | 6.43 | 2.51 | |||
120/100 | 44.75 | 44.54 | 72.14 | 73.88 | 5.35 | 2.63 | |||
140/100 | 47.76 | 43.41 | 71.13 | 76.27 | 5.49 | 3.61 | |||
80/120 | 42.66 | 54.41 | 74.71 | 74.93 | 5.60 | 3.08 | |||
100/120 | 43.37 | 43.55 | 73.59 | 70.92 | 4.37 | 3.12 | |||
120/120 | 43.28 | 43.60 | 71.84 | 73.34 | 7.30 | 2.10 | |||
140/120 | 42.50 | 44.84 | 73.47 | 75.46 | 6.22 | 1.29 | |||
80/140 | 44.10 | 54.69 | 74.10 | 75.86 | 4.43 | 1.92 | |||
100/140 | 44.83 | 52.75 | 72.28 | 78.10 | 5.13 | 0.94 | |||
120/140 | 45.00 | 45.57 | 72.39 | 77.74 | 8.99 | 0.62 | |||
140/140 | 44.15 | 58.06 | 70.78 | 68.44 | 6.57 | 0.13 | |||
LSD | 0.40 | 1.23 | 0.38 |
Extrusion and Roasting Temperature (°C) | Ostwald de Waele’s Model | |||||||
---|---|---|---|---|---|---|---|---|
Consistency Coefficient K [Pa s²] | LSD | Flow Index n [ ] | LSD | Coefficient of Fit R² | ||||
Preparation Type | Preparation Type | Preparation Type | ||||||
E | EW | E | EW | E | EW | |||
80/80 | 6.14 | 1.10 | 0.27 | 0.52 | 0.66 | 0.02 | 0.9996 | 0.9999 |
100/80 | 2.36 | 1.28 | 0.59 | 0.65 | 0.9999 | 0.9999 | ||
120/80 | 0.68 | 0.94 | 0.67 | 0.68 | 0.9999 | 0.9998 | ||
140/80 | 0.73 | 0.89 | 0.69 | 0.66 | 0.9999 | 0.9994 | ||
80/100 | 7.66 | 4.97 | 0.50 | 0.56 | 0.9997 | 0.9996 | ||
100/100 | 2.07 | 6.52 | 0.60 | 0.54 | 0.9999 | 0.9997 | ||
120/100 | 0.77 | 5.46 | 0.67 | 0.55 | 0.9998 | 0.9987 | ||
140/100 | 0.66 | 4.31 | 0.70 | 0.55 | 0.9999 | 0.9994 | ||
80/120 | 4.70 | 1.57 | 0.53 | 0.52 | 0.9999 | 0.9965 | ||
100/120 | 1.42 | 0.82 | 0.62 | 0.57 | 0.9999 | 0.9994 | ||
120/120 | 0.54 | 1.83 | 0.71 | 0.52 | 0.9999 | 0.9996 | ||
140/120 | 0.57 | 4.07 | 0.70 | 0.42 | 1.0000 | 0.9947 | ||
80/140 | 2.32 | * | 0.58 | * | 0.9999 | * | ||
100/140 | 0.84 | * | 0.66 | * | 0.9998 | * | ||
120/140 | 0.47 | * | 0.70 | * | 0.9998 | * | ||
140/140 | 0.45 | * | 0.72 | * | 0.9999 | * | ||
LSD | 0.09 | 0.01 | - |
Extrusion and Roasting Temperature (°C) | Casson’s Model | |||||||
---|---|---|---|---|---|---|---|---|
Yield Point τoc [Pa] | LSD | Plastic Viscosity ηc [Pa s] | LSD | Coefficient of Fit R² | ||||
Preparation Type | Preparation Type | Preparation Type | ||||||
E | EW | E | EW | E | EW | |||
80/80 | 15.17 | 2.80 | 0.62 | 0.17 | 0.10 | 0.01 | 0.9963 | 0.9987 |
100/80 | 6.03 | 3.27 | 0.12 | 0.10 | 0.9962 | 0.9984 | ||
120/80 | 1.71 | 2.38 | 0.06 | 0.09 | 0.9986 | 0.9990 | ||
140/80 | 1.80 | 2.31 | 0.08 | 0.07 | 0.9989 | 0.9994 | ||
80/100 | 18.55 | 12.68 | 0.18 | 0.19 | 0.9948 | 0.9978 | ||
100/100 | 5.31 | 16.43 | 0.11 | 0.22 | 0.9966 | 0.9974 | ||
120/100 | 1.92 | 13.89 | 0.07 | 0.19 | 0.9983 | 0.9968 | ||
140/100 | 1.62 | 10.95 | 0.07 | 0.15 | 0.9990 | 0.9980 | ||
80/120 | 11.68 | 3.78 | 0.14 | 0.04 | 0.9959 | 0.9850 | ||
100/120 | 3.62 | 2.06 | 0.09 | 0.03 | 0.9969 | 0.9939 | ||
120/120 | 1.29 | 4.51 | 0.07 | 0.05 | 0.9989 | 0.9953 | ||
140/120 | 1.36 | 8.90 | 0.07 | 0.05 | 0.9987 | 0.9754 | ||
80/140 | 5.95 | * | 0.11 | * | 0.9970 | * | ||
100/140 | 2.10 | * | 0.07 | * | 0.9972 | * | ||
120/140 | 1.12 | * | 0.06 | * | 0.9980 | * | ||
140/140 | 1.05 | * | 0.06 | * | 0.9984 | * | ||
LSD | 0.22 | 0.01 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zięba, T.; Solińska, D.; Gryszkin, A.; Kapelko-Żeberska, M.; Raszewski, B.; Ačkar, Đ.; Babić, J.; Miličević, B.; Jozinović, A. Potato Starch Extrusion and Roasting with Apple Distillery Wastewater as a New Method for Resistant Starch Production. Appl. Sci. 2021, 11, 9169. https://doi.org/10.3390/app11199169
Zięba T, Solińska D, Gryszkin A, Kapelko-Żeberska M, Raszewski B, Ačkar Đ, Babić J, Miličević B, Jozinović A. Potato Starch Extrusion and Roasting with Apple Distillery Wastewater as a New Method for Resistant Starch Production. Applied Sciences. 2021; 11(19):9169. https://doi.org/10.3390/app11199169
Chicago/Turabian StyleZięba, Tomasz, Dominika Solińska, Artur Gryszkin, Małgorzata Kapelko-Żeberska, Bartosz Raszewski, Đurđica Ačkar, Jurislav Babić, Borislav Miličević, and Antun Jozinović. 2021. "Potato Starch Extrusion and Roasting with Apple Distillery Wastewater as a New Method for Resistant Starch Production" Applied Sciences 11, no. 19: 9169. https://doi.org/10.3390/app11199169
APA StyleZięba, T., Solińska, D., Gryszkin, A., Kapelko-Żeberska, M., Raszewski, B., Ačkar, Đ., Babić, J., Miličević, B., & Jozinović, A. (2021). Potato Starch Extrusion and Roasting with Apple Distillery Wastewater as a New Method for Resistant Starch Production. Applied Sciences, 11(19), 9169. https://doi.org/10.3390/app11199169