Application of Air-Coupled Ultrasonic Nondestructive Testing in the Measurement of Elastic Modulus of Materials
Abstract
:1. Introduction
2. Design of High-Performance Flat Air-Coupled Ultrasonic Transducer
3. Measurement of Elastic Modulus of Materials Based on Air-Coupled Ultrasonic Nondestructive Testing
4. Experimental Results and Analyses
4.1. Deployment of the Experimental Environment
4.2. Results of the Measurement
4.3. Contrast Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, J.; Benavente, D.; Garcia, M.A. Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull. Eng. Geol. Environ. 2012, 71, 263–268. [Google Scholar] [CrossRef]
- Brancheriau, L.; Bailleres, H. Natural vibration analysis of clear wooden beams: A theoretical review. Wood Sci. Technol. 2002, 36, 347–365. [Google Scholar] [CrossRef]
- Brancheriau, L.; Bailleres, H.; Guitard, D. Comparison between modulus of elasticity values calculated using 3 and 4 point bending tests on wooden samples. Wood Sci. Technol. 2002, 36, 367–383. [Google Scholar] [CrossRef]
- Sha, G. A simultaneous non-destructive characterisation method for grain size and single-crystal elastic constants of cubic polycrystals from ultrasonic measurements. Insight Non-Destruct. Test. Cond. Monit. 2018, 60, 190–193. [Google Scholar] [CrossRef]
- Rouzaud, A.; Barbier, E.; Ernoult, J.; Quesnel, E. A method for elastic modulus measurements of magnetron sputtered thin films dedicated to mechanical applications. Thin Solid Film. 1995, 270, 270–274. [Google Scholar] [CrossRef]
- Zehnder, C.; Peltzer, J.N.; Gibson, K.L.; Korte-Kerzel, S. High strain rate testing at the nano-scale: A proposed methodology for impact nanoindentation. Mater. Des. 2018, 151, 17–28. [Google Scholar] [CrossRef]
- Gianfranco, G.; Giacomo, M.; Giulio, B.; Raffaello, L.; Maurizio, G. Effect of contact stiffness and machine calibration in nano-indentation testing. Procedia Cirp 2018, 78, 208–212. [Google Scholar]
- Bronisław, P.; Paulina, W.; Barbara, L.; Emilia, P.; Jacek, P. Impulse Excitation Technique IET as a non-destructive method for determining changes during the gelcasting process. Ceram. Int. 2016, 42, 3989–3996. [Google Scholar]
- Tripathy, H.; Raju, S.; Hajra, R.N.; Saibaba, S. High temperature elastic properties of reduced activation ferritic-martensitic (rafm) steel using impulse excitation technique. Metall. Mater. Trans. A 2018, 49, 979–989. [Google Scholar] [CrossRef]
- Bahr, O.; Schaumann, P.; Bollen, B.; Bracke, J. Young’s modulus and Poisson’s ratio of concrete at high temperatures: Experimental investigations. Mater. Des. 2013, 45, 421–429. [Google Scholar] [CrossRef]
- Gregorova, E.; Pabst, W.; Necina, V.; Uhlirova, T.; Diblikova, P. Young’s modulus evolution during heating, re-sintering and cooling of partially sintered alumina ceramics. J. Eur. Ceram. Soc. 2019, 39, 1893–1899. [Google Scholar] [CrossRef]
- Xie, Y.; Qin, Y.; Yang, X.; Ye, Q. Modification of human hair Young modulus apparatus by tension method. Phys. Exp. 2018, 38, 51–54. [Google Scholar]
- Meng, Y.; Deng, W.; Qin, P.; Zhou, H.; Chang, X.; Liu, Q.; Fan, D. Small-angle measurement for elastic modulus test based on grating diffraction. Phys. Exp. 2017, 37, 54–57. [Google Scholar]
- Wu, Q.; Wen, Y.; Duan, J.; Zhang, H.; Zhang, X. Application of Fraunhofer single slit diffraction method in the measurement of modulus of elasticity. J. Yunnan Univ. (Nat. Sci. Ed.) 2014, 36, 227–231. [Google Scholar]
- Chen, F.; Brown, G.M.; Song, M. Overview of three-dimensional shape measurement using optical methods. Opt. Eng. 1999, 39, 10–21. [Google Scholar]
- Wang, T.; Cai, X.; Li, Y.; Liang, H. Experimental design of Young’s elastic modulus measured by digital laser speckle. Laser Infrared 2017, 47, 11–14. [Google Scholar]
- Yan, Q.; Chen, Y.; Hu, X.; Zhao, X. Measurement of Young’s modulus of aluminum plate by digital holographic comparison. Coll. Phys. 2018, 37, 25–29. [Google Scholar]
- Ye, T.; Zhou, Y.; Pan, N.; Zhang, Z.; Fang, K.; He, L.; Du, A.; Wang, X. Measuring Yong modulus of wire with optical fiber sensor. Phys. Exp. 2015, 35, 36–38, 42. [Google Scholar]
- Fu, W.E.; Chang, Y.Q.; He, B.C.; Wu, C.L. Determination of Young’s modulus and Poisson’s ratio of thin films by X-ray methods. Thin Solid Film. 2013, 544, 201–205. [Google Scholar] [CrossRef]
- Wu, W. Experimental study on ultrasonic testing of tungsten molybdenum alloys. World Nonferr. Met. 2018, 14, 270–271. [Google Scholar]
- Zhang, L.; He, C.; Zhang, C.; Guo, K.; Du, B. Examples analysis of ultrasonic testing of titanium alloy materials. Phys. Test. Chem. Anal. (Part A Phys. Test.) 2019, 55, 468–473. [Google Scholar]
- Qu, Z.; Wu, L.; An, Y.; Bai, M.; Fang, R.; Yan, D. Development and application of guided wave ultrasonic testing technique. J. Tianjin Univ. Sci. Technol. 2017, 32, 1–8. [Google Scholar]
- Parveen, N.; Murthy, G. Determination of elastic modulus in a nickel alloy from ultrasonic measurements. Bull. Mater. Sci. 2011, 34, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Sun, N.; Chen, Y. Material elastic modulus measured with ultrasonic phased array. Nondestruct. Test. 2014, 36, 37–39. [Google Scholar]
- Kocab, D.; Topola, L.; Kucharczykova, B.; Possl, P.; Hodulakova, M. Observation of the Development of the Elastic Modulus and Strength in a Polymer-Cement Mortar Using the Acoustic Emission Method. Solid State Phenom. 2018, 272, 76–81. [Google Scholar] [CrossRef]
- Waag, G.; Hoff, L.; Norli, P. Air-coupled ultrasonic through-transmission thickness measurements of steel plates. Ultrasonics 2015, 56, 332–339. [Google Scholar] [CrossRef]
- Wang, X.; Fan, Y.; Tian, W.; Kwon, H.; Kennerly, S.; Claydon, G.; May, A. An Air-Coupled Capacitive Micromachined Ultrasound Transducer for Noncontact Nondestructive Evaluation. In Proceedings of the 2007 SENSORS, IEEE, Atlanta, GA, USA, 28–31 October 2007. [Google Scholar]
- Kelly, S.; Farlow, R.; Hayward, G. Applications of through-air ultrasound for rapid NDE scanning in the aerospace industry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 43, 581–591. [Google Scholar] [CrossRef]
- Wang, X.; Fan, Y.; Tian, W.; Kwon, H.; Kennerly, S.; Claydon, G.; May, A. Development of air-coupled ultrasound transducers for nondestructive evaluation. In Proceedings of the 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Tucson, AZ, USA, 13–17 January 2008. [Google Scholar]
- Boulm, A.; Ngo, S.; Minonzio, J.G.; Legros, M.; Talmant, M.; Laugier, P.; Certon, D. A capacitive micromachined ultrasonic transducer probe for assessment of cortical bone. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 61, 710–723. [Google Scholar] [CrossRef] [Green Version]
- Rao, L. Study on Air-Coupled Lamb Waves Imaging Detection for Impact Damage of Composite Laminates. Master’s Thesis, Nanchang Hangkong University, Nanchang, China, 2017. [Google Scholar]
- Wei, Q.; Jin, C.; Zhou, J.; Zhou, Z.; Sun, G. Application of air-coupled ultrasonic technology for nondestructive testing of aerospace composites. Non-Destruct. Test. 2016, 38, 6–11. [Google Scholar]
- Khairi, M.; Ibrahim, S.; Yunus, M.; Faramarzi, M. Contact and non-contact ultrasonic measurement in the food industry: A review. Meas. Sci. Technol. 2016, 27, 012001. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, G. New progress of the study and application of advanced ultrasonic testing technology. J. Mech. Eng. 2017, 53, 1–10. [Google Scholar] [CrossRef]
- Stoessel, R.; Krohn, N.; Pfleiderer, K.; Busse, G. Air-coupled ultrasound inspection of various materials. Ultrasonics 2002, 40, 159–163. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, H. Research on the Transducer’s Matching Layer Parameters Optimization. Yadian Yu Shengguang/Piezoelectrics Acoustooptics 2015, 37, 368–372. [Google Scholar]
- Chen, X.; Chen, Y. College Physics Experiment: A Series of Teaching Materials for the Teaching Demonstration Center of College Physics Experiment; Higher Education Press: Beijing, China, 2015. [Google Scholar]
- Liu, G.; Mao, A.; Sun, H.; Liu, L. Evaluation of uncertainty in elastic modulus measurement experiment of steel wire. Silicon Val. 2009, 22, 115. [Google Scholar]
Types | Density (kg/m3) | Acoustic Velocity (m/s) | Acoustic Impedance (MRayl) |
---|---|---|---|
Matching Layer 1 | 550 | 2700 | 1.404 |
Matching Layer 2 | 30 | 900 | 0.027 |
Types | Values (10−2 m) |
---|---|
length L | 148.7 ± 0.3 |
diameter d | 0.0626 ± 0.0006 |
Category | ΔL | Tension Increasing | Tension Reducing | Average Value | |
---|---|---|---|---|---|
1 | 0 | 21.3 | 21.3 | 21.3 | |
2 | 39.5 | 39.6 | 39.55 | ||
3 | 57.8 | 57.8 | 57.8 | ||
4 | 75.9 | 76.0 | 75.95 | ||
5 | 94.1 | 94.2 | 94.15 | ||
6 | 112.4 | 112.4 | 112.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, X.; Yang, X.; Zhang, L.; Wu, H. Application of Air-Coupled Ultrasonic Nondestructive Testing in the Measurement of Elastic Modulus of Materials. Appl. Sci. 2021, 11, 9240. https://doi.org/10.3390/app11199240
Chen J, Wang X, Yang X, Zhang L, Wu H. Application of Air-Coupled Ultrasonic Nondestructive Testing in the Measurement of Elastic Modulus of Materials. Applied Sciences. 2021; 11(19):9240. https://doi.org/10.3390/app11199240
Chicago/Turabian StyleChen, Jie, Xiaoyu Wang, Xu Yang, Li Zhang, and Hong Wu. 2021. "Application of Air-Coupled Ultrasonic Nondestructive Testing in the Measurement of Elastic Modulus of Materials" Applied Sciences 11, no. 19: 9240. https://doi.org/10.3390/app11199240
APA StyleChen, J., Wang, X., Yang, X., Zhang, L., & Wu, H. (2021). Application of Air-Coupled Ultrasonic Nondestructive Testing in the Measurement of Elastic Modulus of Materials. Applied Sciences, 11(19), 9240. https://doi.org/10.3390/app11199240