Surface Properties of Silica–MWCNTs/PDMS Composite Coatings Deposited on Plasma Activated Glass Supports
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
- demineralized water (SPRING 20 from Hydrolab, Straszyn, Poland)
- ultrapure water (Milli-Q™ system from Merck, Darmstadt, Germany; 18.2 MΩ∙cm−1 at 298 K)
- multiwalled carbon nanotubes, MWCNTs
- tetraethyl orthosilicate, TEOS (98%, Aldrich, St. Louis, USA)
- hydrochloric acid, HCl (35–38%, POCH S.A., Lublin, Poland)
- ethanol, EtOH (96%, POCH S.A., Lublin, Poland)
- hexamethyldisilazane, HMDS (98%, Aldrich, St. Louis, USA)
- potassium chloride, KCl (reagent grade, POCH S.A., Lublin, Poland)
- glass microscope slides with the dimensions of 76 × 26 × 1 mm (ChemLand, Stargard, Poland)
2.2. Samples Preparation
2.2.1. Synthesis of the Filler
2.2.2. Plasma Activation of the Supports
2.2.3. Synthesis and Coating Application
2.2.4. Hydrophobization of the Coatings
2.3. Samples Study
2.3.1. Stability
2.3.2. Thermal Analysis
2.3.3. Wettability and Surface Free Energy
2.3.4. Surface Topography and Thickness of the Coatings
2.3.5. Scanning Electron Microscopy
2.3.6. X-Ray Diffraction Analysis (XRD)
2.3.7. Optical Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L.; Pagliaro, M. The Sol-Gel Route to Advanced Silica-Based Materials and Recent Applications. Chem. Rev. 2013, 113, 6592–6620. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.M.; Gonçalves, M.C. Chapter 8.8: Sol-Gel Process and Products. In Encyclopedia of Glass Science, Technology, History, and Culture; Richet, P., Conradt, R., Takada, A., Dyon, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Carrera-Figueiras, C.; Pérez-Padilla, Y.; Estrella-Gutiérrez, M.A.; Uc-Cayetano, E.G.; Juárez-Moreno, J.A.; Avila-Ortega, A. Surface Science Engineering through Sol-Gel Process. In Applied Surface Science; Injeti, G., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Soyaslan, İ.İ. Thermal and sound insulation properties of pumice/polyurethane composite material. Emerg. Mater. Res. 2020, 9, 859–867. [Google Scholar] [CrossRef]
- Salmi, L.D. Atomic Layer Deposition of Inorganic—Organic Hybrid Material Thin Films. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2020. [Google Scholar]
- Ozkazanc, E.; Ozkazanc, H. Multifunctional polyaniline/chloroplatinic acid composite material: Characterization and potential applications. Polym. Eng. Sci. 2019, 59, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Belardja, M.S.; Djelad, H.; Lafjah, M.; Lafjach, M.; Chouli, F.; Benyoucef, A. The influence of the addition of tungsten trioxide nanoparticle size on structure, thermal, and electroactivity properties of hybrid material–reinforced PANI. Colloid Polym. Sci. 2020, 298, 1455–1463. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Salehi, S.; Maghmoomi, F.; Sahebian, S.; Zebarjad, S.; Lazzeri, A. A study on the effect of carbon nanotube surface modification on mechanical and thermal properties of CNT/HDPE nanocomposite. J. Thermoplast. Compos. Mater. 2021, 34, 203–220. [Google Scholar] [CrossRef]
- Shi, X.; Hassanzadeh-Aghdam, M.K.; Ansari, R. A comprehensive micromechanical analysis of the thermoelastic properties of polymer nanocomposites containing carbon nanotubes with fully random microstructures. Mech. Adv. Mater. Struct. 2021, 28, 331–342. [Google Scholar] [CrossRef]
- Gawęda, M.; Długoń, E.; Sowa, M.; Jeleń, P.; Marchewka, J.; Bik, M.; Mroczka, K.; Bezkosty, P.; Kusz, K.; Simka, W.; et al. Polysiloxane-Multiwalled Carbon Nanotube Layers on Steel Substrate: Microstructural, Structural and Electrochemical Studies. J. Electrochem. Soc. 2019, 166, D707–D717. [Google Scholar] [CrossRef]
- Guo, C.; Itoh, K.; Sun, D.; Kondo, Y.; Fuji, M. Carbon Nanotube/Polysiloxane Foams with Tunable Absorption Bands for Electromagnetic Wave Shielding. ACS Appl. Nano Mater. 2020, 3, 5944–5954. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Lei, L.; Lan, T.; Li, Y.; Li, P.; Lin, X.; Liu, R.; Huang, Z.; Fen, X.; et al. Chemical vapor deposition-grown carbon nanotubes/graphene hybrids for electrochemical energy storage and conversion. FlatChem 2019, 15, 100091. [Google Scholar] [CrossRef]
- Raval, J.P.; Joshi, P.; Chejara, D.R. Carbon nanotube for targeted drug delivery. In Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing: Sawston, UK, 2018; pp. 203–216. [Google Scholar]
- Korri-Youssoufi, H.; Zribi, B.; Miodek, A.; Haghiri-Gosnet, A.M. Carbon-Based Nanomaterials for Electrochemical DNA Sensing. In Nanotechnology and Biosensors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–150. [Google Scholar]
- Husen, A.; Siddiqi, K.S. Carbon and fullerene nanomaterials in plant system. J. Nanobiotechnol. 2014, 12, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basheer, B.V.; George, J.J.; Siengchin, S.; Parameswaranpillai, J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. Nano-Struct. Nano-Objects 2020, 22, 100429. [Google Scholar]
- Sulym, I.; Zdarta, J.; Ciesielczyk, F.; Sternik, D.; Derylo-Marczewska, A.; Jesionowski, T. Pristine and Poly(Dimethylsiloxane) Modified Multi-Walled Carbon Nanotubes as Supports for Lipase Immobilization. Materials 2021, 14, 2874. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Ameeduzzafar; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F.A.; Al-Malki, A.A.L.; Kazmi, I.; Kumar, V.; Kamal, M.A.; Nadeem, M.S.; et al. Nanomedicine in treatment of breast cancer—A challenge to conventional therapy. Semin. Cancer Biol. 2021, 69, 279–292. [Google Scholar] [CrossRef]
- Xue, C.H.; Wu, Y.; Guo, X.J.; Liu, B.Y.; Wang, H.D.; Jia, S.T. Superhydrophobic, flame-retardant and conductive cotton fabrics via layer-by-layer assembly of carbon nanotubes for flexible sensing electronics. Cellulose 2020, 27, 3455–3468. [Google Scholar] [CrossRef]
- Ungvári, K.; Mészáros, S.; Szabó, A.; Hernádi, K.; Tóth, Z. In Vitro Biocompatibility Test of Multiwall Carbon Nanotubes with Human Osteoblast Cells: Potential Application for Bone Implant Interface Reinforcement. J. Nanosci. Nanotechnol. 2021, 21, 2394–2403. [Google Scholar] [CrossRef]
- Gaviria, W.A.; Hersam, M.C. Chirality-Enriched Carbon Nanotubes for Next-Generation Computing. Adv. Mater. 2020, 32, 1905654. [Google Scholar] [CrossRef]
- Ghalandari, M.; Maleki, A.; Haghighi, A.; Safdari Shadloo, M.; Alhuyi Nazari, M.; Tlili, I. Applications of nanofluids containing carbon nanotubes in solar energy systems: A review. J. Mol. Liq. 2020, 313, 113476. [Google Scholar] [CrossRef]
- Wu, S.; Tahri, O. State-of-art carbon and graphene family nanomaterials for asphalt modification. Road Mater. Pavement Des. 2021, 22, 735–756. [Google Scholar] [CrossRef]
- Shifa, M.; Tariq, F.; Chandio, A.D. Mechanical and electrical properties of hybrid honeycomb sandwich structure for spacecraft structural applications. J. Sandw. Struct. Mater. 2021, 23, 222–240. [Google Scholar] [CrossRef]
- Rangelova, N.; Radev, L.; Nenkova, S.; Miranda Salvado, I.M.; Vas Fernandes, M.; Herzog, M. Methylcellulose/SiO2 hybrids: Sol-gel preparation and characterization by XRD, FTIR and AFM. Open Chem. 2011, 9, 112–118. [Google Scholar] [CrossRef]
- Li, S.; Liu, M. Synthesis and conductivity of proton-electrolyte membranes based on hybrid inorganic–organic copolymers. Electrochim. Acta 2003, 48, 4271–4276. [Google Scholar] [CrossRef]
- Dul, S.; Ecco, L.G.; Pegoretti, A.; Fambri, L. Graphene/Carbon Nanotube Hybrid Nanocomposites: Effect of Compression Molding and Fused Filament Fabrication on Properties. Polymers 2020, 12, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachekoski, W.M.; Amico, S.C.; Pezzin, S.H.; Moraes d’Almeida, J.R. Carbon nanotube hybrid polymer composites: Recent advances in mechanical characterization. In Hybrid Polymer Composite Materials: Properties and Characterisation; Thakur, V.K., Thakur, M.K., Pappu, A., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 133–150. [Google Scholar]
- What Is Plasma Technology and What Are Its Applications? Available online: https://www.azonano.com/article.aspx?ArticleID=5280 (accessed on 30 August 2021).
- Goldston, R.; Rutherford, P. Introduction to Plasma Physics; Institute of Physics Publishing: Bristol, UK, 1995. [Google Scholar]
- Morozow, A.I. Introduction to Plasma Dynamics; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Cocktail Party Physics. Chilling Out with Cold Plasmas. Available online: https://blogs.scientificamerican.com/cocktail-party-physics/chilling-out-with-cold-plasmas/ (accessed on 30 August 2021).
- Misra, N.N.; Kaur, S.; Tiwari, B.K.; Kaur, A.; Singh, N.; Cullen, P.J. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll. 2015, 44, 115–121. [Google Scholar] [CrossRef]
- Park, G.Y.; Park, S.J.; Choi, M.Y.; Koo, I.G.; Byun, J.H.; Hong, J.W.; Sim, J.Y.; Lee, J.K.; Collins, G.J. Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 2012, 21, 043001. [Google Scholar] [CrossRef]
- Ananth, A.; Gandhi, M.S.; Mok, Y.S. A dielectric barrier discharge (DBD) plasma reactor: An efficient tool to prepare novel RuO2 nanorods. J. Phys. D Appl. Phys. 2013, 46, 155202. [Google Scholar] [CrossRef]
- Baklanov, M.R.; de Marneffe, J.F.; Shamiryan, D.; Urbanowicz, A.M.; Shi, H.; Rakhimova, T.V.; Huang, H.; Ho, P.S. Plasma processing of low-k dielectrics. J. Appl. Phys. 2013, 113, 041101. [Google Scholar] [CrossRef]
- Kartel, M.; Sementsov, Y.I.; Mahno, S.; Trachevskiy, V.; Bo, W. Polymer composites filled with multiwall carbon nanotubes. Univ. J. Mater. Sci. 2016, 4, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Melezhyk, A.V.; Sementsov, Y.I.; Yanchenko, V.V. Synthesis of Fine Carbon Nanotubes on Coprecipitated Metal Oxide Catalysts. Russ. J. Appl. Chem. 2005, 78, 917–923. [Google Scholar] [CrossRef]
- Sulym, I.; Kubiak, A.; Jankowska, K.; Sternik, D.; Terpiłowski, K.; Sementsov, Y.; Borysenko, M.; Deryło-Marczewska, A.; Jesionowski, T. Superhydrophobic MWCNTs/PDMS-nanocomposite materials: Preparation and characterization. Physicochem. Probl. Miner. Process. 2019, 55, 1394–1400. [Google Scholar]
- Chodkowski, M.; Terpiłowski, K.; Goncharuk, O. Surface properties of the doped silica hydrophobic coatings deposited on plasma activated glass supports. Physicochem. Probl. Miner. Process. 2019, 55, 1450–1459. [Google Scholar]
- Chodkowski, M.; Terpiłowski, K.; Pasieczna-Patkowska, S. Fabrication of transparent polysiloxane coatings on a glass support via the sol-gel dip coating technique and the effect of their hydrophobization with hexamethyldisilazane. Physicochem. Probl. Miner. Process. 2020, 56, 76–88. [Google Scholar] [CrossRef]
- Smoluchowski, M. Handbuch der Electrizität und des Magnetismus, Band II; Barth-Verlag: Leipzig, Germany, 1921; pp. 366–427. [Google Scholar]
- Delgado, A.V.; González-Caballero, F.; Hunter, R.J.; Koopal, L.K.; Lyklema, J. Measurement and interpretation of electrokinetic phenomena. Pure Appl. Chem. 2005, 77, 1753–1805. [Google Scholar] [CrossRef] [Green Version]
- González, B.; Calvar, N.; Gómez, E.; Domínguez, Á. Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K. J. Chem. Thermodyn. 2007, 39, 1578–1588. [Google Scholar] [CrossRef]
- Refractive Index of Ethanol Solutions. Available online: http://www.refractometer.pl/refraction-datasheet-ethanol (accessed on 28 June 2021).
- Wyman, J. The dielectric constant of mixtures of ethyl alcohol and water from −5 to 40°. J. Am. Chem. Soc. 1931, 53, 3292–3301. [Google Scholar] [CrossRef]
- Terpiłowski, K.; Hołysz, L.; Chodkowski, M.; Clemente Guinarte, D. What Can You Learn about Apparent Surface Free Energy from the Hysteresis Approach? Colloids Interfaces 2021, 5, 4. [Google Scholar] [CrossRef]
- Matusiak, J.; Grządka, E. Stability of colloidal systems—A review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska Sectio AA-Chemia 2017, 72, 33–45. [Google Scholar] [CrossRef]
- Xu, P.; Wang, H.; Tong, R.; Du, Q.; Zhong, W. Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid Polym. Sci. 2006, 284, 755–762. [Google Scholar] [CrossRef]
- Camino, G.; Lomakin, S.M.; Lazzari, M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer 2001, 42, 2395–2402. [Google Scholar] [CrossRef]
- Sulym, I.; Klonos, P.; Borysenko, M.; Pissis, P.; Gun’ko, V.M. Dielectric and Thermal Studies of Segmental Dynamics in Silica/PDMS and Silica/Titania/PDMS Nanocomposites. J. Appl. Polym. Sci. 2014, 131, 1236–1246. [Google Scholar] [CrossRef]
- Bužarovska, A.; Stefov, V.; Najdoski, M.; Bogoeva-Gaceva, G. Thermal analysis of multi-walled carbon nanotubes material obtained by catalytic pyrolysis of polyethylene. Maced. J. Chem. Chem. Eng. 2015, 34, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Chodkowski, M.; Terpiłowski, K. Significance of the receding contact angle in the determination of surface free energy. Annales Universitatis Mariae Curie-Sklodowska Sectio AA-Chemia 2018, 73, 61–80. [Google Scholar] [CrossRef]
- Bormashenko, E. Wetting of real solid surfaces: New glance on well-known problems. Colloid Polym. Sci. 2013, 291, 339–342. [Google Scholar] [CrossRef]
- Tadmor, R. Line energy and the relation between advancing, receding, and young contact angles. Langmuir 2004, 20, 7659–7664. [Google Scholar] [CrossRef]
- Cui, L.; Ranade, A.N.; Matos, M.A.; Dubois, G.; Dauskardt, R.H. Improved Adhesion of Dense Silica Coatings on Polymers by Atmospheric Plasma Pretreatment. ACS Appl. Mater. Interfaces 2013, 5, 8495–8504. [Google Scholar] [CrossRef]
- Soma Raju, K.R.C.; Sowntharya, L.; Lavanya, S.; Subasri, R. Effect of plasma pretreatment on adhesion and mechanical properties of sol-gel nanocomposite coatings on polycarbonate. Compos. Interfaces 2012, 19, 259–270. [Google Scholar] [CrossRef]
- Webb, H.K.; Truong, V.K.; Hasan, J.; Fluke, C.; Crawford, R.J.; Ivanova, E.P. Roughness Parameters for Standard Description of Surface Nanoarchitecture. Scanning 2012, 34, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Raghavendra, C.R.; Basavarajappa, S.; Sogalad, I.; Saunshi, V.K.K. Study on surface roughness parameters of nano composite coatings prepared by electrodeposition process. Mater. Today Proc. 2021, 38, 3110–3115. [Google Scholar] [CrossRef]
- He, B.; Ding, S.; Shi, Z. A comparison between profile and areal surface roughness parameters. Metrol. Meas. Syst. 2021, 28, 413–438. [Google Scholar]
- Faustini, M.; Louis, B.; Albouy, P.A.; Kuemmel, M.; Grosso, D. Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions. J. Phys. Chem. C 2010, 114, 7637–7645. [Google Scholar] [CrossRef]
- Figus, C.; Patrini, M.; Floris, F.; Fornasari, L.; Pellacani, P.; Marchesini, G.; Valsesia, A.; Artizzu, F.; Marongiu, D.; Saba, M.; et al. Synergic combination of the sol–gel method with dip coating for plasmonic devices. Beilstein J. Nanotechnol. 2015, 6, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.H.; Xue, J.M.; Wang, J.; Chan, H.S.O.; Yu, T.; Shen, Z.X. NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. J. Appl. Phys. 2002, 91, 6015–6020. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.R.; Palomares-Sánchez, S.; Ortega-Zarzosa, G.; Ruiz, F.; Chumakov, Y. Rietveld refinement of amorphous SiO2 prepared via sol–gel method. Mater. Lett. 2006, 60, 3526–3529. [Google Scholar] [CrossRef]
- He, X.; Xu, X.; Bo, G.; Yan, Y. Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. RSC Adv. 2020, 10, 2180–2190. [Google Scholar] [CrossRef] [Green Version]
- Nie, P.; Min, C.; Song, H.J.; Chen, X.; Zhang, Z.; Zhao, K. Preparation and Tribological Properties of Polyimide/Carboxyl-Functionalized Multi-walled Carbon Nanotube Nanocomposite Films Under Seawater Lubrication. Tribol. Lett. 2015, 58, 7. [Google Scholar] [CrossRef]
- Carter, S.F.; France, P.W. Drawing induced absorption loss in multicomponent glass fibres. J. Non-Cryst. Solids 1983, 58, 47–55. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
plasma type | low pressure cold plasma (LPCP) |
process duration | 5 min |
carrier gas | air or argon |
gas flow | 50 sccm |
pressure | 0.2 mbar (controlled via gases) |
generator model | LFG40 |
generator frequency | 40 kHz (RF) |
generator power 1 | 100%/1000 W |
flushing/venting gas | air |
Sample Number | Support Activation | Withdrawal Speed [mm/min] |
---|---|---|
#1 | nonmodified | 50 |
#2 | air plasma | 50 |
#3 | argon plasma | 50 |
#4 | nonmodified | 20 |
#5 | air plasma | 20 |
#6 | argon plasma | 20 |
#7 | nonmodified | n/a (manually) |
#8 | nonmodified | n/a (spread) |
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | |
---|---|---|---|---|---|---|---|---|
Ra [nm] | 3.61 | 8.51 | 6.48 | 2.68 | 5.40 | 7.36 | 703.45 | 2.670 × 103 |
Rq [nm] | 4.81 | 11.41 | 14.23 | 4.78 | 9.88 | 12.09 | 795.61 | 4.280 × 103 |
Sa [nm] | 1.69 | 4.289 | 5.48 | 2.06 | 4.11 | 5.13 | 703.00 | 2.674 × 103 |
Sq [nm] | 3.05 | 6.473 | 13.83 | 4.36 | 9.11 | 10.37 | 796.00 | 4.277 × 103 |
Ssk | 6.77 | 1.426 | −8.57 | 6.72 | 7.91 | 7.07 | 0.24 | 2.89 |
Sku | 104.25 | 25.253 | 730.91 | 81.48 | 142.70 | 118.27 | 5.23 | 18.70 |
Sdq [deg] | 0.04 | 0.06 | 0.27 | 0.06 | 0.14 | 0.16 | 9.82 | 48.19 |
Sdr [%] | 0 | 0 | 0.001 | 0 | 0 | 0 | 1.14 | 46.04 |
Sds [1/mm2] | 339.01 | 546.797 | 162.36 | 467.72 | 350.79 | 418.09 | 1417.47 | 1195.38 |
Str | 0.68 | 0.819 | 0.74 | 0.73 | 0.74 | 0.77 | 0.78 | 0.73 |
Element 1 | MWCNTs | MWCNTs + PDMS |
---|---|---|
C | 92.96 | 88.37 |
O | 5.14 | 7.01 |
Si | 0.46 | 3.13 |
Mo | 0.39 | 0.45 |
Fe | 1.06 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chodkowski, M.; Sulym, I.Y.; Terpiłowski, K.; Sternik, D. Surface Properties of Silica–MWCNTs/PDMS Composite Coatings Deposited on Plasma Activated Glass Supports. Appl. Sci. 2021, 11, 9256. https://doi.org/10.3390/app11199256
Chodkowski M, Sulym IY, Terpiłowski K, Sternik D. Surface Properties of Silica–MWCNTs/PDMS Composite Coatings Deposited on Plasma Activated Glass Supports. Applied Sciences. 2021; 11(19):9256. https://doi.org/10.3390/app11199256
Chicago/Turabian StyleChodkowski, Michał, Iryna Ya. Sulym, Konrad Terpiłowski, and Dariusz Sternik. 2021. "Surface Properties of Silica–MWCNTs/PDMS Composite Coatings Deposited on Plasma Activated Glass Supports" Applied Sciences 11, no. 19: 9256. https://doi.org/10.3390/app11199256
APA StyleChodkowski, M., Sulym, I. Y., Terpiłowski, K., & Sternik, D. (2021). Surface Properties of Silica–MWCNTs/PDMS Composite Coatings Deposited on Plasma Activated Glass Supports. Applied Sciences, 11(19), 9256. https://doi.org/10.3390/app11199256