Shaking Table Tests to Validate Inelastic Seismic Analysis Method Applicable to Nuclear Metal Components
Abstract
:1. Introduction
2. Design of Seismic Test Mockup
2.1. Configuration and Dimensions
2.2. Analysis Model and Dynamic Characteristics of Test Mockup
3. Seismic Shaking Table Tests
3.1. Performance of Shaking Table Test Facility
3.2. Description of Test System and Sensors
3.3. Results of Shaking Table Tests
3.3.1. Strain Time History Seismic Responses
3.3.2. Acceleration Time History Seismic Responses
4. Validation of Inelastic Seismic Analysis
4.1. Analysis Modeling
4.1.1. Dynamic Characteristics
4.1.2. Structural Damping Value
4.1.3. Inelastic Material Model
4.1.4. Seismic Input Motions
4.2. Results of Inelastic Seismic Analyses
4.2.1. Validation of Strain Time History Responses
4.2.2. Validation of Acceleration Time History Responses
5. Conclusions
- The seismic responses obtained from the inelastic seismic time history analyses with an accurate inelastic material model using Chaboche’s kinematic hardening model and the Voce isotropic hardening model for Type 316 stainless steel are in good agreement with those of the seismic shaking table tests.
- From the comparison of the seismic strain time history responses at the nozzle between the tests and inelastic analyses, the location of the maximum strain responses from the inelastic analyses was found to be almost the same as the locations in the test results.
- The structure damping value for the piping systems, recommended in the US NRC RG 1.61 [24], is 4% for the SSE level. However, in this study, the piping system made of Type 316 stainless steel revealed a much lighter damping value of about 0.57%.
- For earthquakes large enough to result in inelastic behavior at the nuclear metal components, the inelastic seismic analysis is useful for reducing the seismic responses by energy dissipation due to hysteretic damping.
- From the validation results obtained from the test mockup simulating the actual nuclear component in this study, it is assured that the inelastic seismic analysis method can be used for the seismic design of nuclear metal components in large earthquake scenarios such as the beyond-design-basis earthquake, which can cause significant plastic deformations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seismic Isolation Systems for Nuclear Installations; IAEA-TECDOC-1905; IAEA: Vienna, Austria, 2020.
- Koshida, H.; Yasaka, A. Vibration tests and earthquake observation results of base-isolated building. Seism. Shock. Vib. Isol. 1989, 181, 135–140. [Google Scholar]
- Koo, G.H.; Jung, J.Y.; Lee, J.H.; Shin, T.M. Development of Small-Sized Lead Inserted Laminated Rubber Bearing for Nuclear Component Seismic Isolation. Energies 2020, 13, 3193. [Google Scholar] [CrossRef]
- Kostarev, V.; Petrenko, A.; Vasilev, P. A New Method for Essential Reduction of Seismic and External Loads on NPP’s Structures, Systems and Components. In Proceedings of the 17th International Conference on Structural Mechanics in Reactor Technology, Prague, Czech Republic, 17–22 August 2003; p. 3216. [Google Scholar]
- Kwag, S.Y.; Kwag, J.S.; Lee, H.H.; Oh, J.H.; Koo, G.H. Enhancement in the Seismic Performance of a Nuclear Piping System using Multiple Tuned Mass Dampers. Energies 2019, 12, 2077. [Google Scholar] [CrossRef] [Green Version]
- Alternative Rules for Level D Service Limits of Class 1, 2, and 3 Piping Systems, Section III, Division 1, ASME Code Case (Record No. 13-1438); ASME: New York, NY, USA, 2019.
- Masaki, M.; Akihiro, O.; Tomoyoshi, W.; Izumi, N.; Tadahiro, S.; Masaki, S. Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis: Part 1—A Code Case for Piping Seismic Evaluation Based on Detailed Inelastic Response Analyses. In Proceedings of the ASME 2017 PVP Conference, Waikoloa, HI, USA, 16–20 July 2017; Volume 8. [Google Scholar]
- Akihiro, O.; Tadahiro, S.; Masaki, M.; Izumi, N.; Tomoyoshi, W.; Masaki, S. Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis: Part 2—A Guideline for Piping Seismic Inelastic Response Analysis. In Proceedings of the ASME 2017 PVP Conference, Waikoloa, HI, USA, 16–20 July 2017; Volume 8. [Google Scholar]
- Koo, G.H.; Kim, J.S.; Kim, Y.J. Feasibility Study on Strain-Based Seismic Design Criteria for Nuclear Components. Energies 2020, 13, 4435. [Google Scholar] [CrossRef]
- ASME. BPVC Section III, Rules for Construction of Nuclear Facility Components, Mandatory Appendix XIII, Design Based on Stress Analysis; ASME: New York, NY, USA, 2021. [Google Scholar]
- AFCEN. RCC-M: Design and Construction Rules for Mechanical Components of PWR Nuclear Islands; AFCEN: Lyon, France, 2017. [Google Scholar]
- Kim, J.Y.; Lee, J.M.; Park, J.G.; Kim, J.S.; Cho, M.K.; Ahn, S.W.; Koo, G.H.; Lee, B.H.; Huh, N.S.; Kim, Y.J.; et al. Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load. Nucl. Eng. Technol. 2021. [Google Scholar] [CrossRef]
- Koo, G.H.; Kwag, S.; Nam, H.S. Study on Inelastic Strain-Based Seismic Fragility Analysis for Nuclear Metal Components. Energies 2021, 14, 3269. [Google Scholar] [CrossRef]
- Ravikiran, A.; Dubey, P.N.; Agrawal, M.K.; Reddy, G.R.; Singh, R.K.; Vaze, K.K. Experimental and Numerical Studies of Ratcheting in a Pressurized Piping System under Seismic Load. J. Press. Vessel. Technol. 2015, 137, 3. [Google Scholar] [CrossRef]
- Shirai, E.; Eto, K.; Umemoto, A.; Yoshii, T.; Kondo, M.; Shimizu, H.; Tai, K. Inelastic Seismic Test of the Small Bore Piping and Support System: Part 2—Static Failure Test for Piping Support Equipment. In Proceedings of the ASME 2008 PVP Conference, Chicago, IL, USA, 27–31 July 2008; Volume 8. [Google Scholar]
- ANSYS. ANSYS Mechanical APDL Release 15.0; ANSYS, Inc.: Canonsburg, PA, USA, 2014. [Google Scholar]
- Young, W.C.; Budynas, R.G.; Sadegh, A.M. Roark’s Formulas for Stress and Strain, 8th ed.; McGraw Hill: New York, NY, USA, 2012. [Google Scholar]
- Harris, C.M. Shock and Vibration Handbook; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
- Chaboche, J.L.; Rousselier, G. On the plastic and viscoplastic constitutive equations—Part II: Application of internal variable concepts to the 316 stainless steel. J. Press. Vessel. Technol. 1983, 105, 159–164. [Google Scholar] [CrossRef]
- Chaboche, J.L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 1989, 5, 247–302. [Google Scholar] [CrossRef]
- Voce, E. A Practical Strain hardening Function. Metallurgia 1955, 51, 219–226. [Google Scholar]
- Koo, G.H.; Yoon, J.H. Inelastic Material Models of Type 316H for Elevated Temperature Design of Advanced High Temperature Reactors. Energies 2020, 13, 4548. [Google Scholar] [CrossRef]
- Standard Review Plan, 3.7.1 Seismic Design Parameters; NUREG-0800; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 2012.
- Damping Values for Seismic Design of Nuclear Power Plants; Regulatory Guide 1.61; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 2007.
Design Parameters | Design Value |
---|---|
Pipe Outer Diameter (mm) | 89.1 |
Pipe Thickness (mm) | 7.6 |
Vertical Pipe Length (mm) | 850 |
Horizontal Pipe Length (mm) | 550 |
Elbow Curvature (mm) | 114.3 |
Added Mass-1 (kg) | 80 |
Added Mass-2 (kg) | 40 |
Total Height of Nozzle (mm) | 167.35 |
Nozzle Outer Diameter (mm) | 133.34 |
Mode No. | Frequencies (Hz) | Modal Participation Factors | Effective Mass | ||||
---|---|---|---|---|---|---|---|
EW | NS | V | EW | NS | V | ||
1 | 11.74 | 0.00 | 10.07 | 0.00 | 0.00 | 101.46 | 0.00 |
2 | 11.99 | −8.74 | 0.00 | 4.35 | 76.30 | 0.00 | 18.96 |
3 | 25.89 | 0.00 | 5.47 | 0.00 | 0.00 | 29.94 | 0.00 |
4 | 27.63 | 7.74 | 0.00 | 5.05 | 59.84 | 0.00 | 25.54 |
5 | 101.61 | 0.00 | 0.07 | 0.00 | 0.00 | 5.81 | 0.00 |
Item | Performance |
---|---|
Max. Loading (kg) | 2000 |
Table Size (mm) | 2209 × 2173 |
Excitation Axes | 6 DOF (Translation 3 axes, Rotational 3 Axes) |
Max. Displacement (mm) | Hor. (X, Z) = (±125, ±140), Ver. (Y) = ±110 |
Max. Accel. for bare table (g) | Hor. (X, Z) = 17, Ver. (Y) = 21 |
Max. Accel. with max load (g) | Hor. (X, Z) = 4.9, Ver. (Y) = 6.0 |
Frequency Range (Hz) | 0.8~100 |
Excitation Mechanism | Electro-hydraulic Servo, 3 Variable Control |
Control Software | 354.20/MTS |
Item | Specifications |
---|---|
Model Name | KFGS-1-120-D17-11L15M3S (KYOWA) |
Gauge Length (mm) | 1 |
Gauge Resistance (Ω) | 120 ± 0.7% |
Gauge Pattern | Triaxial 0°–45°–90° Rosette, Round base |
Adoptable Thermal Expansion | 11.7 × 10−6/°C |
Applicable Adhesive | CC-33A, EP-340 |
Item | Specifications |
---|---|
Model Name | Type 8396A (KISTLER) |
Sensing Type | MEMS Variable Capacitance, Silicon Sensing Element |
Measuring Range (g) | 50 |
Measuring Axis | Triaxial |
Measuring Freq. Range (Hz) | 0.5~5000 |
Operating Temperature (°C) | −55~125 |
Strain Gauge ID | X (EW) (mm) | Y (V) (mm) | Z (NS) (mm) | Corresponding Node (1) |
---|---|---|---|---|
SG-1 | 26.2 | 156.0 | 36.0 | 19118 |
SG-2 | 40.7 | 156.0 | 18.1 | 19125 |
SG-3 | 44.5 | 156.0 | 0.0 | 137 |
SG-4 | 40.7 | 156.0 | −18.1 | 851 |
SG-5 | 26.2 | 156.0 | −36.0 | 858 |
Directions | PGA | Target Input Motions | Shaking Table (Accelerometer-1) | End of Pipe (Accelerometer-3) | |||
---|---|---|---|---|---|---|---|
ZPA (g) | ZPA Ratio * | ZPA (g) | ZPA Ratio | ZPA (g) | ZPA Ratio | ||
EW (X) | 0.3 g | 1.18 | 2.0 | 1.71 | 1.95 | 5.55 | 1.57 |
0.6 g | 2.35 | 3.33 | 8.76 | ||||
NS (Z) | 0.3 g | 0.86 | 2.0 | 1.47 | 2.12 | 9.26 | 1.37 |
0.6 g | 1.75 | 3.13 | 12.70 | ||||
V (Y) | 0.3 g | 1.33 | 2.0 | 1.86 | 1.95 | 6.23 | 1.58 |
0.6 g | 2.65 | 3.62 | 9.88 |
Directions | Mode 1 (Hz) | Mode 2 (Hz) | |
---|---|---|---|
EW (X) | Test | 11.75 | 28.75 |
Analysis | 11.99 | 27.63 | |
NS (Z) | Test | 11.75 | 27.38 |
Analysis | 11.74 | 25.89 | |
V (Y) | Test | 11.56 | 28.56 |
Analysis | 11.99 | 27.63 |
Material | σyo × 106 (Pa) | E × 109 (Pa) | C1 × 109 | C2 × 109 | C3 × 109 | γ1 × 103 | γ2 × 103 | γ3 | b | Q × 106 |
---|---|---|---|---|---|---|---|---|---|---|
Type 316SS | 135 | 190 | 120 | 20.2 | 10.67 | 1.0 | 1.0 | 1.0 | 45.0 | 85 |
Strain Gauge ID | Tests (%) | Inelastic Seismic Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|
PGA = 0.3 g | PGA = 0.6 g | PGA = 0.3 g | PGA = 0.6 g | |||||
Max(εmax) | Min(εmin) | Max(εmax) | Min(εmin) | Max(εmax) | Min(εmin) | Max(εmax) | Min(εmin) | |
SG-1 | 0.139 | −0.144 | 0.185 | −0.202 | 0.101 | −0.139 | 0.184 | −0.247 |
SG-2 | 0.125 | −0.119 | 0.212 | −0.211 | 0.123 | −0.120 | 0.199 | −0.197 |
SG-3 | 0.139 | −0.158 | 0.249 | −0.262 | 0.119 | −0.099 | 0.255 | −0.189 |
SG-4 | 0.148 | −0.161 | 0.217 | −0.239 | 0.127 | -0.128 | 0.273 | −0.194 |
SG-5 | 0.152 | −0.168 | 0.228 | −0.230 | 0.165 | −0.167 | 0.290 | −0.216 |
Directions | PGA (g) | Tests (g) | Inelastic Seismic Analysis (g) |
---|---|---|---|
EW | 0.3 | 5.55 | 6.17 |
0.6 | 8.76 | 9.90 | |
NS | 0.3 | 9.26 | 12.68 |
0.6 | 12.70 | 16.80 | |
V | 0.3 | 6.23 | 8.71 |
0.6 | 9.88 | 12.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, G.-H.; Ahn, S.-W.; Hwang, J.-K.; Kim, J.-S. Shaking Table Tests to Validate Inelastic Seismic Analysis Method Applicable to Nuclear Metal Components. Appl. Sci. 2021, 11, 9264. https://doi.org/10.3390/app11199264
Koo G-H, Ahn S-W, Hwang J-K, Kim J-S. Shaking Table Tests to Validate Inelastic Seismic Analysis Method Applicable to Nuclear Metal Components. Applied Sciences. 2021; 11(19):9264. https://doi.org/10.3390/app11199264
Chicago/Turabian StyleKoo, Gyeong-Hoi, Sang-Won Ahn, Jong-Keun Hwang, and Jong-Sung Kim. 2021. "Shaking Table Tests to Validate Inelastic Seismic Analysis Method Applicable to Nuclear Metal Components" Applied Sciences 11, no. 19: 9264. https://doi.org/10.3390/app11199264
APA StyleKoo, G. -H., Ahn, S. -W., Hwang, J. -K., & Kim, J. -S. (2021). Shaking Table Tests to Validate Inelastic Seismic Analysis Method Applicable to Nuclear Metal Components. Applied Sciences, 11(19), 9264. https://doi.org/10.3390/app11199264