Model for Cryogenic Flashing LNG Leak
Abstract
:1. Introduction
2. Materials and Methods
- Both the liquid and gas phase temperature will be LNG ambient boiling temperature at the end of the expansion zone;
- The heat exchange from vaporization is much greater than heat gain from surrounding so the warming effect is ignored;
- The vapour mass fraction is much lower than 1.
3. Results
3.1. Leak Scenario
3.2. CFD Initial Condition and Output Control
3.3. Simulation Finding
3.4. Comparison with Established LNG Safety Guideline
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DNV GL. Energy Transition Outlook 2019. A Global and Regional Forecast to 2050; Irvine, M., Ed.; DNV GL: Hovik, Norway, 2019. [Google Scholar]
- IMO 2020—Cutting Sulphur Oxide Emissions. Available online: http://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx (accessed on 14 April 2021).
- Thomson, H.; Corbett, J.J.; Winebrake, J.J. Natural gas as a marine fuel. Energy Policy 2015, 87, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Gas Tanker Explosion in China Kills 19. Available online: https://edition.cnn.com/2020/06/14/asia/china-gas-tanker-explosion-intl-hnk/index.html (accessed on 14 April 2021).
- Webber, D.M.; Gant, S.E.; Ivings, M.J.; Jagger, S.F. LNG Source Term Models for Hazard Analysis RR789; Health and Safety Laboratory: Derbyshire, UK, 2010. [Google Scholar]
- Siuta, D.; Markowski, A.S.; Mannan, M.S. Uncertainty techniques in Liquefied Natural Gas (LNG) dispersion calculations. J. Loss Prev. Process Ind. 2013, 26, 418–426. [Google Scholar] [CrossRef]
- Ikealumba, W.C.; Wu, H. Some recent advances in Liquefied Natural Gas (LNG) production, spill, dispersion, and safety. Energy Fuels 2014, 28, 3556–3586. [Google Scholar] [CrossRef]
- ISO. ISO 20519:2017: Ships and Marine Technology—Specification for Bunkering of Liquefied Natural Gas Fuelled Vessels; BSI Standards; ISO: Liverpool, UK; Geneva, Switzerland, 2017; ISBN 978-0-580-89936-2. [Google Scholar]
- HSE. Failure Rate and Event Data for use within Risk Assessments (06/11/17); Health Safety Executive: Bootle, UK, 2017; Volume 1, pp. 1–102. [Google Scholar]
- NEA. QRA Technical Guidance Revision 3; National Environment Agency: Singapore, 2016; pp. 1–39. [Google Scholar]
- Witlox, H.W.M.; Harper, M.; Oke, A.; Bowen, P.J.; Kay, P. Sub-cooled and flashing liquid jets and droplet dispersion I. Overview and model implementation/validation. J. Loss Prev. Process Ind 2010, 23, 831–842. [Google Scholar] [CrossRef]
- Cleary, V.; Bowen, P.; Witlox, H. Flashing liquid jets and two-phase droplet dispersion. I. Experiments for derivation of droplet atomisation correlations. J. Hazard Mater. 2007, 142, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Lautkaski, R. Experimental correlations for the estimation of the rainout of flashing liquid releases—Revisited. J. Loss Prev. Process Ind. 2008, 21, 506–511. [Google Scholar] [CrossRef]
- Hervieu, E.; Veneau, T. Experimental determination of the droplet size and velocity distributions at the exit of the bottom discharge pipe of a liquefied propane storage tank during a sudden blowdown. J. Loss Prev. Process Ind. 1996, 9, 413–425. [Google Scholar] [CrossRef]
- Bonnet, P.; Lacome, J.M. Experimental study of accidental industrial LPG releases: Rain out investigation. In Proceedings of the 40th Annual Loss Prevention Symposium, Orlando, FL, USA, 23–27 April 2006; pp. 395–404. [Google Scholar]
- Joubert, L.; Leroy, G.; Betteridge, S.; Vyazmina, E.; Bernard, L. Presentation of the experimental JIP SPARCLING: Inside and beyond a pressurised LNG release. In Proceedings of the 13th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions (ISHPMIE), Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, 27 July–31 August 2020; pp. 2–11. [Google Scholar]
- Calay, R.K.; Holdo, A.E. Modelling the dispersion of flashing jets using CFD. J. Hazard. Mater. 2008, 154, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Lemofack, C.; Lacome, J.M.; Reveillon, J.; Demoulin, F.X. Numerical modelling of liquid jets atomisation due to leakage of liquefied gas storage. In Proceedings of the ICLASS 2012—12th International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, 2–6 September 2012; pp. 1–12. [Google Scholar]
- Fauske, H.K.; Epstein, M. Source term considerations in connection with chemical accidents and vapour cloud modelling. J. Loss Prev. Process Ind. 1988, 1, 75–83. [Google Scholar] [CrossRef]
- Franquet, E.; Perrier, V.; Gibout, S.; Bruel, P. Free underexpanded jets in a quiescent medium: A review. Prog. Aerosp. Sci. 2015, 77, 25–53. [Google Scholar] [CrossRef]
- Multi-LNG White STS Composite Hoses Datasheet. Available online: https://www.gutteling.com/uploads/Gutteling/Hoses/Datasheets/Gutteling_Datasheet_2016_Hoses_Multi-LNG_White_STS.pdf (accessed on 14 April 2021).
- NI 618 Guidelines on LNG Bunkering; Bureau Veritas. Available online: https://erules.veristar.com/dy/data/bv/pdf/618-NI_2014-07.pdf (accessed on 1 March 2021).
- Nubli, H.; Sohn, J.M. CFD-based simulation of accidental fuel release from LNG-fuelled ships. Ships Offshore Struct. 2020, 1–20. [Google Scholar] [CrossRef]
- Climate of Singapore. Available online: http://www.weather.gov.sg/climate-climate-of-singapore/ (accessed on 14 April 2021).
- FLACS-CFD 20.1 User’s Manual; Gexcon AS. 2020. Available online: https://www3.gexcon.com/files/manual/flacs/html/index.html (accessed on 25 April 2020).
- Koopman, R.P.; Cederwall, R.T.; Ermak, D.L.; Goldwire, H.C.; Hogan, W.J.; McClure, J.W.; McRae, T.G.; Morgan, D.L.; Rodean, H.C.; Shinn, J.H. Analysis of Burro series 40-m3 lng spill experiments. J. Hazard. Mater. 1982, 6, 43–83. [Google Scholar] [CrossRef]
- Havens, J.; Spicer, T. LNG vapor cloud exclusion zones for spills into impoundments. Process Saf. Prog. 2005, 24, 181–186. [Google Scholar] [CrossRef]
- Sklavounos, S.; Rigas, F. Simulation of Coyote series trials—Part I: CFD estimation of non-isothermal LNG releases and comparison with box-model predictions. Chem. Eng. Sci. 2006, 61, 1434–1443. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1959, 24, 163–187. [Google Scholar]
- Singapore Standard Council. TR 56-3: 2020. LNG Bunkering—Part 3: Procedures and Safety Distances; Singapore Standard Council: Singapore, 2020; ISBN 978-981-48-9487-6. [Google Scholar]
- Process Hazard Analysis Software—PHAST. Available online: https://www.dnv.com/software/services/phast/index.html (accessed on 29 July 2021).
Jet Region | Parameter | Value |
---|---|---|
Breach orifice | A1 | 0.0000636 m2 |
V1 | 35.03 m/s | |
P1 | 8.0 bar | |
ρ1 | 418.3 kg/m3 | |
Entrainment zone | A3 | 0.0239 m2 |
V3 | 21.70 m/s | |
P2 | 1.0 bar | |
ρ3 | 1.797 kg/m3 |
Leak Direction | Wind Direction | Furthest LFL Distance (m) |
---|---|---|
Vertical upward | North | 16.72 |
Vertical downward | North | 35.70 |
Horizontal | East (tailwind) | 49.83 |
Horizontal | West (headwind) | 32.53 |
Horizontal | North-east (crosswind) | 47.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, B.H.; Ng, E.Y.K. Model for Cryogenic Flashing LNG Leak. Appl. Sci. 2021, 11, 9312. https://doi.org/10.3390/app11199312
Lim BH, Ng EYK. Model for Cryogenic Flashing LNG Leak. Applied Sciences. 2021; 11(19):9312. https://doi.org/10.3390/app11199312
Chicago/Turabian StyleLim, Boon How, and Eddie Yin Kwee Ng. 2021. "Model for Cryogenic Flashing LNG Leak" Applied Sciences 11, no. 19: 9312. https://doi.org/10.3390/app11199312
APA StyleLim, B. H., & Ng, E. Y. K. (2021). Model for Cryogenic Flashing LNG Leak. Applied Sciences, 11(19), 9312. https://doi.org/10.3390/app11199312