Trends in Performance Limits of the HOT Infrared Photodetectors
Abstract
:1. Introduction
2. Trends in Development of Infrared HOT Photodetectors
3. The Ultimate HgCdTe Photodiode Performance
3.1. SRH Carrier Lifetime
3.2. Dark Current Density
3.3. Detectivity
4. Interband Quantum Cascade Infrared Photodetectors (IB QCIPs)
5. 2D Material Infrared Photodetectors
- transition metal dichalcogenides (TMDs),
- black phosphorus (bP), metal halides (e.g., PbI2, MgBr2), metal oxides (such as MnO2 and MnO3), double hydroxides, III-Vs (such as InSe and GaS), V-VIs (such as Bi2Te3 and Sb2Se3), and
- atomically thin hexagonal boron nitride (h-BN, similar to hexagonal sheets of graphene),
- halide perovskites.
5.1. 2D Material Photodetectors: Current Responsivity Versus Response Time
5.2. Detectivity: HgCdTe Photodiode Versus 2D Material Photodetectors
- in general, the 2D material IR detectors performance is lower in comparison to the commercially available detectors, especially HgCdTe and new emerging III-V compounds including T2SLs,
- responsivity improvement by using combination of 2D materials with bulks (hybrid photodetectors) owing to the photogating effect causes the limited linear dynamic range due to the charge relaxation time, which lead to decrease in sensitivity with incident optical power,
- responsivity of hybrid and chemically functionalized 2D material photodetectors is comparable with detectors existing on the global market; however, a significant decrease in operating speed (bandwidth) is observed; in general, their response time (millisecond range and longer) is three orders of magnitude longer compared to commercially available photodetectors (microsecond range and shorter) [12],
- the commercialization potential will not just depend on the detector performance, but on the distinct advantages in the ability for fabrication of large scale high quality 2D materials at a low cost,
- experimental data presented by the Teledyne Technologies group [66] support theoretical prediction of background limited P-i-N HgCdTe photodiodes and gives further encouragement for their operation in near room-temperature conditions.
6. Colloidal Quantum Dot Infrared Photodetectors
6.1. Brief View
6.2. Present Status of CQD Photodiodes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | 2 dimensional |
3D | 3 dimensional |
α | The absorption coefficient |
APD | Avalanche photodiode |
bP | Black phosphorus |
bP | Black phosphorus |
bPAs | Black phosphorus-arsenic |
c | Speed of light |
C | Scene contrast |
CMOS | Complementary metal-oxide semiconductor |
CQD | Colloidal quantum dot |
D* | Detectivity |
FIR | Far infrared |
FOV | Field-of-view |
FPA | Focal plane arrays |
g | Photoconductive gain |
G | The thermal generation |
h | Planck’s constant |
h-BN | Hexagonal boron nitride |
HOT | High operating temperatures |
IB QCIP | Interband quantum cascade infrared photodetectors |
IR | Infrared radiation |
𝐽𝐵𝐿𝐼P | Background radiation current |
Jdark | Dark current density |
Jdep | Depletion current |
Jdif | Diffusion current |
λ | Wavelength |
LWIR | Long wavelength infrared radiation |
MBE | Molecular beam epitaxy |
MWIR | Middle wavelength infrared radiation |
MOCVD | Metalorganic chemical vapor deposition |
NEDT | Noise equivalent difference temperature |
n | Electron concentration |
ni | Intrinsic carrier concentration |
NIR | Near infrared |
p | Hole concentration |
PC | Photoconductor |
PEM | Photoelectromagnetic |
PV | Photodiode |
Ri | Current responsivity |
q | The electron charge |
QE | Quantum efficiency |
QD | Quantum dot |
QDIP | Quantum dot infrared photodetectors |
QWIP | Quantum well infrared photodetectors |
R0A | Dynamic resistance area product |
ROIC | Readout integration circuits |
SRH | Shockley-Read-Hall |
SWaP | Size, weight, and power consumption |
SWIR | Short wavelength infrared radiation |
T2SLs | Type-II superlattices |
THz | Terahertz |
TMD | Transition metal dichalcogenide |
τA1 | Auger 1 lifetime |
τAi | Intrinsic Auger 1 lifetime |
τint | Integration time |
τpo | Specific SRH lifetimes |
τSRH | SRH lifetime |
UV | Ultraviolet |
vdW | van der Waals |
ΦB | Background flux |
References
- Iwert, O.; Delabrea, O. The challenge of highly curved monolithic imaging detectors. Proc. SPIE 2010, 7742, 774227. [Google Scholar]
- Jeong, K.-H.; Kim, J.; Lee, L.P. Biologically inspired artificial compound eyes. Science 2006, 312, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.M.; Xie, Y.; Malyarchuk, V.; Xiao, J.; Jung, I.; Choi, K.-J.; Liu, Z.; Park, H.; Lu, C.; Kim, R.H.; et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ackerman, M.M.; Guyot-Sionnest, P. Colloidal quantum dots based infrared electronic eyes for multispectral imaging. Proc. SPIE 2019, 11088, 1108803. [Google Scholar]
- Lu, Q.; Liu, W.; Wang, X. 2-D Material-Based Photodetectors on Flexible Substrates. In Inorganic Flexible Optoelectronics: Materials and Applications; Ma, Z., Liu, D., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2019; pp. 117–142. [Google Scholar]
- Piotrowski, J.; Galus, W.; Grudzień, M. Near room temperature IR photodetectors. Infrared Phys. Technol. 1991, 31, 1–48. [Google Scholar] [CrossRef]
- Piotrowski, J.; Rogalski, A. Photoelectromagnetic, Magnetoconcentration and Dember Infrared Detectors. In Narrow-Gap II–VI Compounds and Electromagnetic Applications; Capper, P., Ed.; Chapman & Hall: London, UK, 1997; pp. 506–525. [Google Scholar]
- Piotrowski, J.; Rogalski, A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 2004, 46, 115–131. [Google Scholar] [CrossRef]
- Piotrowski, J.; Rogalski, A. High-Operating-Temperature Infrared Photodetectors; SPIE Press: Bellingham, WA, USA, 2007. [Google Scholar]
- Piotrowski, J.; Pawluczyk, J.; Piotrowski, A.; Gawron, W.; Romanis, M.; Kłos, K. Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev. 2010, 18, 318–327. [Google Scholar] [CrossRef]
- Rogalski, A.; Kopytko, M.; Martyniuk, P. Antimonide-Based Infrared Detectors. A New Perspective; SPIE Press: Bellingham, WA, USA, 2018. [Google Scholar]
- Rogalski, A.; Kopytko, M.; Martyniuk, P. Two-dimensional infrared and terahertz detectors: Qutlook and status. Appl. Phys. Rev. 2019, 6, 021316. [Google Scholar] [CrossRef]
- Guyot-Sionnest, P.; Ackerman, M.M.; Tang, X. Colloidal quantum dots for infrared detection beyond silicon. J. Chem. Phys. 2019, 151, 60901. [Google Scholar] [CrossRef] [Green Version]
- Elliott, C.T.; Gordon, N.T.; White, A.M. Towards background-limited, room-temperature, infrared photon detectors in the 3–13 μm wavelength range. Appl. Phys. Lett. 1999, 74, 2881–2883. [Google Scholar] [CrossRef]
- Piotrowski, J.; Rogalski, A. Comment on “Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe”. J. Appl. Phys. 1996, 80, 2542–2544. [Google Scholar] [CrossRef]
- Rogalski, A. Infrared and Terahertz Detectors; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Robinson, J.; Kinch, M.; Marquis, M.; Littlejohn, D.; Jeppson, K. Case for small pixels: System perspective and FPA challenge. Proc. SPIE 2014, 9100, 91000I. [Google Scholar]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Challenges of small-pixel infrared detectors: A review. Rep. Prog. Phys. 2016, 79, 046501-1-42. [Google Scholar] [CrossRef] [PubMed]
- Holst, G.C.; Lomheim, T.C. CMOS/CCD Sensors and Camera Systems; JCD Publishing and SPIE Press: Winter Park, CO, USA, 2007. [Google Scholar]
- Kinch, M.A. State-of-the-Art Infrared Detector Technology; SPIE Press: Bellingham, WA, USA, 2014. [Google Scholar]
- Holst, G.C.; Driggers, R.G. Small detectors in infrared system design. Opt. Eng. 2012, 51, 96401. [Google Scholar] [CrossRef] [Green Version]
- Tennant, W.E.; Lee, D.; Zandian, M.; Piquette, E.; Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, descibrd by ‘Rule 07’, a very convenient heuristic. J. Electron. Mater. 2008, 37, 1406–1410. [Google Scholar] [CrossRef]
- Kinch, M.S.; Aqariden, F.; Chandra, D.; Liao, P.-K.; Schaake, H.F.; Shih, H.D. Minority carrier lifetime in p-HgCdTe. J. Electron. Mater. 2005, 34, 880–884. [Google Scholar] [CrossRef]
- Gravrand, O.; Rothman, J.; Delacourt, B.; Boulard, F.; Lobre, C.; Ballet, P.H.; Santailler, J.L.; Cervera, C.; Brellier, D.; Pere-Laperne, N.; et al. Shockley-Read-Hall lifetime study and implication in HgCdTe photodiodes for IR detection. J. Electron. Mater. 2018, 47, 5680–5690. [Google Scholar] [CrossRef]
- Lee, D.; Dreiske, P.; Ellsworth, J.; Cottier, R.; Chen, A.; Tallarico, S.; Yulius, A.; Carmody, M.; Piquette, E.; Zandian, M.; et al. Law 19—The ultimate photodiode performance metric. Extended Abstracts. In Proceedings of the 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials, Chicago, IL, USA, 18–21 November 2019; pp. 13–15. [Google Scholar]
- Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W.E. High-operating temperature HgCdTe: A vision for the near future. J. Electron. Mater. 2016, 45, 4587–4595. [Google Scholar] [CrossRef]
- Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Rogalski, A. Photon recycling effect in small pixel p-i-n HgCdTe long wavelength infrared photodiodes. Infrared Phys. Technol. 2019, 97, 38–42. [Google Scholar] [CrossRef]
- Rhiger, D.R. Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe. J. Elect. Mater. 2011, 40, 1815–1822. [Google Scholar] [CrossRef]
- Klipstein, P.C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; et al. Type II superlattice technology for LWIR detectors. Proc. SPIE 2016, 9819, 98190T. [Google Scholar]
- Huang, W.; Rassela, S.M.S.; Li, L.; Massengale, J.A.; Yang, R.Q.; Mishima, T.D.; Santos, M.B. A unified figure of merit for interband and intersubband cascade devices. Infrared Phys. Technol. 2019, 96, 298–301. [Google Scholar] [CrossRef]
- Rogalski, A.; Ciupa, R. Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes. J. Electron. Mater. 1999, 28, 630–636. [Google Scholar] [CrossRef]
- Rogalski, A.; Kopytko, M.; Martyniuk, P. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes. Appl. Optics. 2018, 57, D11–D19. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf (accessed on 30 October 2020).
- HOT MCT Detectors. Available online: http://www.teledynejudson.com/ (accessed on 30 October 2020).
- Ashley, T.; Elliott, C.T. Non-equilibrium mode of operation for infrared detection. Electron. Lett. 1985, 21, 451–452. [Google Scholar] [CrossRef]
- Elliott, C.T. Non-equilibrium mode of operation of narrow-gap semiconductor devices. Semicond. Sci. Technol. 1990, 5, S30–S37. [Google Scholar] [CrossRef]
- Gomez, A.; Carras, M.; Nedelcu, A.; Costard, E.; Marcadet, X.; Berger, V. Advantages of quantum cascade detectors. Proc. SPIE 2008, 6900, 69000J. [Google Scholar]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 2019, 68, 100228. [Google Scholar] [CrossRef]
- Huang, W.; Li, L.; Lei, L.; Massengale, J.A.; Yang, R.Q.; Mishima, T.D.; Santos, M.B. Electrical gain in interband cascade infrared photodetectors. J. Appl. Phys. 2018, 123, 113104. [Google Scholar] [CrossRef]
- Hinkey, R.T.; Yang, R.Q. Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors. J. Appl. Phys. 2013, 114, 104506. [Google Scholar] [CrossRef]
- Huang, W.; Lei, L.; Li, L.; Massengale, J.A.; Yang, R.Q.; Mishima, T.D.; Santos, M.B. Current-matching versus non-current-matching in long wavelength interband cascade infrared photodetectors. J. Appl. Phys. 2017, 122, 83102. [Google Scholar] [CrossRef]
- Lei, L.; Li, L.; Lotfi, H.; Ye, H.; Yang, R.Q.; Mishima, T.D.; Santos, M.B.; Johnson, M.B. Mid wavelength interband cascade infrared photodetectors with superlattice absorbers and gain. Opt. Eng. 2018, 57, 11006. [Google Scholar]
- Long, M.; Gao, A.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y.; Liu, E.; Chen, X.; Lu, W.; et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, S.; Lu, W.; Ali, A.; Zhao, P.; Shehzad, K.; Guo, H.; Ma, L.; Liu, X.; Pi, X.; Wang, P.; et al. A broadband fluorographene photodetector. Adv. Mater. 2017, 29, 1700463. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Wang, P.; Luo, W.; Gong, F.; Liao, L.; Liu, T.; Tong, L.; Zang, J.; Xu, J.; Hu, W. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60. [Google Scholar] [CrossRef]
- Amani, M.; Regan, E.; Bullock, J.; Ahn, G.H.; Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724–11731. [Google Scholar] [CrossRef]
- Long, M.; Wang, Y.; Wang, P.; Zhou, X.; Xia, H.; Luo, C.; Huang, S.; Zhang, G.; Yan, H.; Fan, Z.; et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q.; Lin, H.; Zhou, W.; Lin, J.; Suenaga, K.; Liu, Z.; et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545. [Google Scholar] [CrossRef]
- Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 2018, 9, 5266. [Google Scholar] [CrossRef]
- Konstantatos, G.; Sargent, E.H. Solution-processed quantum dot photodetectors. Proc. IEEE. 2009, 97, 1666–1683. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F.P.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.; Rout, C.S.; Late, D.J. (Eds.) Fundamentals and Sensing Applications of 2D Materials; Woodhead Publishing Series in Electronic and Optical Materials; United Kingdom Elsevier: London, UK, 2019. [Google Scholar]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Dou, J.; Wang, M. Graphene, transition metal dichalcogenides, and perovskite photodetectors. In Two-Dimensional Materials for Photodetector; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sun, Y.; Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 2019, 6, 42001. [Google Scholar] [CrossRef]
- Ling, X.; Wang, H.; Huang, S.; Xia, F.; Dresselhaus, M.S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L.; Li, T.; Martyniuk, P.; Rogalski, A.; Hu, W. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 46, 1904396. [Google Scholar] [CrossRef]
- Currie, M. Applications of Graphene to Photonics; Report NRL/MR/5650-14-9550; Naval Research Laboratory: Washington, DC, USA, 2014. [Google Scholar]
- Rogalski, A.; Kopytko, M.; Martyniuk, P. 2D material infrared and terahertz detectors: status and outlook. Opto-Electron. Rev. 2020, 28, 107–154. [Google Scholar]
- Cakmakyapan, S.; Lu, P.K.; Navabi, A.; Jarrahi, M. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci. Appl. 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, Z.; Yin, L.; Cheng, R.; Wang, J.; Wen, Y.; Shifa, T.A.; Wang, F.; Zhang, Y.; Zhan, X.; et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296–6341. [Google Scholar] [CrossRef]
- Buscema, M.; Island, J.O.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; Van der Zant, H.S.J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductor. Chem. Soc. Rev. 2015, 44, 3691–3718. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fang, H.; Wang, X.; Chen, X.; Lu, W.; Hu, W. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894. [Google Scholar] [CrossRef] [Green Version]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2018, 29, 1803807. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, Z.; Shi, X.; Zhang, K.; Zhang, H. Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications. Nanoscale 2019, 11, 14491–14527. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Dreiske, P.; Ellsworth, J.; Cottier, R.; Chen, A.; Tallarico, S.; Barr, H.; Tcheou, H.; Yulius, A.; Carmody, M.; et al. Performance of MWIR and LWIR fully-depleted HgCdTe FPAs. Extended Abstracts. In Proceedings of the 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials, Chicago, IL, USA, 18–21 November 2019; pp. 189–190. [Google Scholar]
- Martyniuk, P.; Rogalski, A. Comparison of performance of quantum dot and other types infrared photodetectors. Proc. SPIE 2008, 6940, 694004. [Google Scholar]
- Stiff-Roberts, A.D. Quantum-dot infrared photodetectors: A review. J. Nanophotonics 2009, 3, 31607. [Google Scholar] [CrossRef]
- Ginger, D.S.; Greenham, N.C. Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Phys. Rev. B 1999, 59, 10622–10629. [Google Scholar] [CrossRef]
- Garcia de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef] [Green Version]
- Guyot-Sionnest, P.; Roberts, J.A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots. Appl. Phys. Lett. 2015, 107, 91115. [Google Scholar] [CrossRef]
- Buurma, C.; Ciani, A.J.; Pimpinella, R.E.; Feldman, J.S.; Grein, C.H.; Guyot-Sionnes, P. Advances in HgTe colloidal quantum dots for infrared detectors. J. Electron. Mater. 2017, 46, 6685–6688. [Google Scholar] [CrossRef]
- De Iacovo, A.; Venettacci, C.; Colace, L.; Scopa, L.; Foglia, S. PbS colloidal quantum dot photodetectors operating in the near infrared. Sci. Rep. 2016, 6, 37913. [Google Scholar] [CrossRef] [Green Version]
- Thambidurai, M.; Jjang, Y.; Shapiro, A.; Yuan, G.; Xiaonan, H.; Xuechao, Y.; Wang, G.J.; Lifshitz, E.; Demir, H.V.; Dang, C. High performance infrared photodetectors up to 2.8 μm wavelength based on lead selenide colloidal quantum dots. Opt. Mater. Express 2017, 7, 2336. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, P.E.; Georgitzikis, E.; Maes, J.; Vamvaka, I.; Frazzica, F.; Van Olmen, J.; De Moor, P.; Heremans, P.; Hens, Z.; Cheyns, D. Thin-film quantum dot photodiode for monolithic infrared image sensors. Sensors 2017, 17, 2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafiz, S.B.; Scimeca, M.; Sahu, A.; Ko, D.-K. Colloidal quantum dots for thermal infrared sensing and imaging. Nano Converg. 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://ibv.vdma.org/documents/256550/27019077/2018-11-07_Stage1_1030_SWIR+Vision+Systems.pdf/ (accessed on 30 October 2020).
- Available online: https://optics.org/news/10/10/38 (accessed on 30 October 2020).
- Lhuillier, E.; Guyot-Sionnest, P. Recent progress in mid infrared nanocrystal optoelectronics. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 6000208. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Lu, H.; Abdelazim, N.M.; Zhu, Y.; Wang, Z.; Ren, W.; Kershaw, S.V.; Rogach, A.L.; Zhao, N. Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2000 nm. ACS Nano 2017, 11, 5614–5622. [Google Scholar] [CrossRef] [PubMed]
- Livache, C.; Martinez, B.; Goubet, N.; Ramade, J.; Lhuillier, E. Road map for nanocrystal based infrared photodetectors. Front. Chem. 2018, 6, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Spectral Range | x Composition | SRH Lifetime (μs) | Temperature (K) |
---|---|---|---|
SWIR | 0.455 | >3000 | 180 |
MWIR | 0.30 | >1000 | 110 |
MWIR | 0.30 | ~50,000 | 89 |
LWIR | 0.225 | >100 | 60 |
Advantages | Disadvantages |
---|---|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W. Trends in Performance Limits of the HOT Infrared Photodetectors. Appl. Sci. 2021, 11, 501. https://doi.org/10.3390/app11020501
Rogalski A, Martyniuk P, Kopytko M, Hu W. Trends in Performance Limits of the HOT Infrared Photodetectors. Applied Sciences. 2021; 11(2):501. https://doi.org/10.3390/app11020501
Chicago/Turabian StyleRogalski, Antoni, Piotr Martyniuk, Małgorzata Kopytko, and Weida Hu. 2021. "Trends in Performance Limits of the HOT Infrared Photodetectors" Applied Sciences 11, no. 2: 501. https://doi.org/10.3390/app11020501
APA StyleRogalski, A., Martyniuk, P., Kopytko, M., & Hu, W. (2021). Trends in Performance Limits of the HOT Infrared Photodetectors. Applied Sciences, 11(2), 501. https://doi.org/10.3390/app11020501