Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sedimentary Basins in the Study Area: Origin and Structure
2.2. Method
2.3. Isostatic and Decompensative Gravity Anomalies
2.3.1. Initial Data
2.3.2. Decompensative Correction
3. Results
- It is supposed that the areas without sediments or with very low amount of them are determined reliably in the initial model. Therefore, we do not apply the correction to the areas where the thickness is less than 0.25 km.
- It is assumed that sedimentary thickness should not exceed 25 km, the limit, which is determined based on existing seismic studies.
- The maximal reduction of the sedimentary thickness is limited to 0.75 of the initial one.
- The final density of sediments (averaged with depth) should be within the range 1.9–2.8 g/cm3, which is consistent with experimental data, e.g., [54].
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Artemieva, I.M.; Thybo, H.; Kaban, M.K. Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 By. In European Lithosphere Dynamics; Gee, D., Stephenson, R., Eds.; Geological Society London Memoirs: London, UK, 2006; Volume 32, pp. 11–41. [Google Scholar]
- Bur’yanov, V.B. The Gravity Field and Density Models of the European Tectonosphere. Int. Geol. Rev. 1985, 27, 1021–1027. [Google Scholar] [CrossRef]
- Kaban, M.K. A gravity model of the north Eurasia crust and upper mantle: 2. The Alpine-Mediterranean fold belt and adjacent structures of the southern former USSR. Russ. J. Earth Sci. 2002, 4, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Yegorova, T.P.; Starostenko, V.I. Lithosphere structure of European sedimentary basins from regional three-dimensional gravity modelling. Tectonophysics 2002, 346, 5–21. [Google Scholar] [CrossRef]
- Bronguleev, V.V. (Ed.) Map of the Pre-Riphean Basement Upper Surface Depth of the East-European Platform; Scale 1:5,000,000; MinGeo: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Artemieva, I.M. Dynamic topography of the East European craton: Shedding light upon lithospheric structure, composition and mantle dynamics. Glob. Planet. Change 2007, 58, 411–434. [Google Scholar] [CrossRef] [Green Version]
- Bronguleev, V.V. On the compilation of maps of structural correspondence between surface and basement relief at the East European plate. Geomorfologia 1977, 4, 44–52. (In Russian) [Google Scholar]
- Giese, P.; Pavlenkova, N.I. Structural Maps of the Earth’s Crust for Europe. Izv. Earth Phys. 1988, 24, 767–775. [Google Scholar]
- Hurtig, E.; Cermak, V.; Haenel, R.; Zui, V. (Eds.) Geothermal Atlas of Europe; GeoForschungsZentrum Potsdam, Publication No. 1; Hermann Haack Verlags-Gesellschaft—Geographisch-Kartographische Anstalt: Gotha, Germany, 1992. [Google Scholar]
- Gorbatikov, A.V.; Rogozhin, E.A.; Stepanova, M.Y.; Kharazova, Y.V.; Andreeva, N.V.; Perederin, F.V.; Zaalishvili, V.B.; Mel’kov, D.A.; Dzeranov, B.V.; Dzeboev, B.A.; et al. The pattern of deep structure and recent tectonics of the Greater Caucasus in the Ossetian sector from the complex geophysical data. Izv. Phys. Solid Earth 2015, 51, 26–37. [Google Scholar] [CrossRef]
- Bulychev, A.A.; Sidorov, R.V.; Dzhamalov, R.G. Use of data of satellite system for gravity recovery and climate experiment (GRACE) for studying and assessment of hydrological-geohydrological characteristics of large river basins. Water Resour. 2012, 39, 514–522. [Google Scholar] [CrossRef]
- Förste, C.; Bruinsma, S.L.; Abrikosov, O.; Lemoine, J.-M.; Marty, J.C.; Flechtner, F.; Balmino, G.; Barthelmes, F.; Biancale, R. EIGEN-6C4 the Latest Combined Global Gravity Field Model Including GOCE Data Up to Degree and Order 2190 of GFZ Potsdam and GRGS Toulouse; GFZ Data Services: Potsdam, Germany, 2014. [Google Scholar] [CrossRef]
- Kaban, M.K.; El Khrepy, S.; Al-Arifi, N. Importance of the Decompensative Correction of the Gravity Field for Study of the Upper Crust: Application to the Arabian Plate and Surroundings. Pure Appl. Geophys. 2017, 174, 349–358. [Google Scholar] [CrossRef]
- Haeger, C.; Kaban, M.K. Decompensative Gravity Anomalies Reveal the Structure of the Upper Crust of Antarctica. Pure Appl. Geophys. 2019, 1–14. [Google Scholar] [CrossRef]
- Gonchar, V.V. Formation and sedimentary filling of the Dnieper-Donets depression (geodynamics and facies) in the light of new data of paleotectonic modeling. Geofizicheskii Zhurnal (Geophys. J.) 2018, 40, 67–94. [Google Scholar] [CrossRef] [Green Version]
- Kirikov, V.P.; Verbitsky, V.R.; Verbitsky, I.V. Platform covers tectonic zoning: Case of the East European platform. Reg. Geol. Metall. 2017, 72, 15–25. (In Russian). Available online: https://vsegei.ru/ru/public/reggeology_met/content/2017/72/72_02.pdf (accessed on 14 July 2020).
- Garetskii, R.G.; Aizberg, R.E.; Starchik, T.A. Pripyat Trough: Tectonics, geodynamics, and evolution. Russ. J. Earth Sci. 2004, 6, 217–250. [Google Scholar] [CrossRef]
- Lebedev, S.A. Climatic variability of water circulation in the Caspian Sea based on satellite altimetry data. Int. J. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Mansouri, F.S.; Zui, V.I. Geothermal field and geology of the Caspian Sea region. J. Belarusian State Univ. Geogr. Geol. 2019, 1, 104–118. [Google Scholar] [CrossRef]
- Brunet, M.-F.; Volozh, Y.; Antipov, M.; Lobkovsky, L. The geodynamic evolution of the Precaspian Basin (Kazakhstan) along a north–south section. Tectonophysics 1999, 313, 85–106. [Google Scholar] [CrossRef]
- Ulmishek, G.F. Petroleum Geology and Resources of the North Caspian Basin, Kazakhstan and Russia; US Geological Survey: Reston, VA, USA, 2001. [CrossRef]
- Svitoch, A.A.; Sobolev, V.M. Pleistocene straits of Manych (morphology, construction and development). Bull. Mosc. Univ. Ser. 5 Geogr. 2011, 4, 70–77. (In Russian) [Google Scholar]
- Goncharov, V.P.; Neprochnov, Y.P.; Neprochnova, A.F. Bottom Topography and Deep Structure of the Black Sea Depression; Nauka: Moscow, Russia, 1972; pp. 131–134. (In Russian) [Google Scholar]
- Nikishin, A.M.; Okay, A.I.; Tüysüz, O.; Demirer, A.; Amelin, N.; Petrov, E. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Mar. Petrol. Geol. 2015, 59, 638–655. [Google Scholar] [CrossRef]
- Myslivets, V.I.; Rimsky-Korsakov, N.A.; Korotaev, V.N.; Porotov, A.V.; Pronin, A.A.; Ivanov, V.V. Morphostructures and Sedimentary Cover Structure of the Inner Shelf of Western Crimea. Oceanology 2019, 59, 965–974. [Google Scholar] [CrossRef]
- Assessment of Undiscovered Oil and Gas Resources of the Azov–Kuban Basin Province, Ukraine and Russia. USGS. 2010. Available online: https://pubs.usgs.gov/fs/2011/3052/pdf/fs2011-3052.pdf (accessed on 25 August 2020).
- Abumuslimov, A.A.; Bankurova, R.U.; Alakhverdiyev, F.D. Features of the geomorphology of the Terek-Kuma lowland. Bull. Acad. Sci. Chechen Repub. 2013, 18, 72–76. [Google Scholar]
- Volchegursky, L.F.; Garetsky, R.G.; Kiryukhin, L.G.; Muratov, M.V.; Raaben, M.E.; Freidlin, A.A.; Shlesinger, A.E.; Yanshin, A.L. Tectonics of the East-European Platform and Its Surroundings: A Digest; Nauka: Moscow, Russia, 1975; pp. 37–39. (In Russian) [Google Scholar]
- Amashukeli, T.A.; Murovskaya, A.V.; Yegorova, T.P.; Alokhin, V.I. The deep structure of the Dobrogea and Fore-Dobrogea trough as an indication of the development of the Trans-European suture zone. Geofizicheskiy Zhurnal 2019, 41, 153–171. [Google Scholar] [CrossRef]
- Arutyunova, N.M.; Afanasyev, Y.T.; Bagdasarova, M.V.; Bayrak, I.K.; Kalimullin, O.K.; Kornienko, G.E.; Korotkov, V.A.; Korotkova, M.K.; Kuvykin, Y.S.; Markova, E.V.; et al. Oil and Gas Content of Great Depths; Nauka: Moscow, Russia, 1980; pp. 26–28. (In Russian) [Google Scholar]
- Oszczypko, N.; Krzywiec, P.; Popadyuk, I.; Peryt, T. Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution. In The Carpathians and Their Foreland: Geology and Hydrocarbon Resources AAPG Memoir; Golonka, J., Picha, F.J., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2006; Volume 84, pp. 221–258. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press Science: London, UK, 1995. [Google Scholar]
- Simpson, R.W.; Jachens, R.C.; Blakely, R.J.; Saltus, R.W. A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. J. Geophys. Res. 1986, 91, 8348–8372. [Google Scholar] [CrossRef]
- Burov, E.B.; Diament, M. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res. 1995, 100, 3905–3927. [Google Scholar] [CrossRef] [Green Version]
- Langenheim, V.E.; Jachens, R.C. Gravity Data Collected along the Los Angeles Regional Seismic Experiment (LARSE) and Preliminary Model of Regional Density Variations in Basement Rocks, Southern California; U.S. Geological Survey Open File Report 96-682; U.S. Geological Survey: Reston, VA, USA, 1996. [Google Scholar] [CrossRef]
- Jachens, R.C.; Moring, C. Maps of the Thickness of Cenozoic Deposits and the Isostatic Residual Gravity over Basement for Nevada; U.S. Geological Survey Open File Report 90-404; U.S. Geological Survey: Reston, VA, USA, 1990. [Google Scholar] [CrossRef]
- Ebbing, J.; Braitenberg, C.; Wienecke, S. Insights into the lithospheric structure and the tectonic setting of the Barents Sea region from isostatic considerations. Geophys. J. Int. 2007, 171, 1390–1403. [Google Scholar] [CrossRef] [Green Version]
- Cordell, L.; Zorin, Y.A.; Keller, G.R. The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift. J. Geophys. Res. Solid Earth 1991, 96, 6557–6568. [Google Scholar] [CrossRef]
- Zorin, Y.A.; Pismenny, B.M.; Novoselova, M.R.; Turutanov, E.K. Decompensative gravity anomalies. Geologia Geofizika 1985, 8, 104–108. (In Russian) [Google Scholar]
- Hildenbrand, T.G.; Griscom, A.; Van Schmus, W.R.; Stuart, W.D. Quantitative investigations of the Missouri gravity low: A possible expression of a large, Late Precambrian batholith intersecting the New Madrid seismic zone. J. Geophys. Res.: Solid Earth 1996, 101, 21921–21942. [Google Scholar] [CrossRef]
- Zorin, Y.A.; Belichenko, V.G.; Turutanov, E.K.; Kozhevnikov, V.M.; Ruzhentsev, S.V.; Dergunov, A.B.; Filippova, I.B.; Tomurtogoo, O.; Arvisbaatar, N.; Bayasgalan, T.; et al. The south Siberia-central Mongolia transect. Tectonophysics 1993, 225, 361–378. [Google Scholar] [CrossRef]
- Wilson, D.; Aster, R.; West, M.; Ni, J.; Grand, S.; Gao, W.; Baldridge, W.; Semken, S.; Patel, P. Lithospheric structure of the Rio Grande rift. Nature 2005, 433, 851–855. [Google Scholar] [CrossRef]
- Kaban, M.K.; El Khrepy, S.; Al-Arifi, N. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings. Pure Appl. Geophys. 2016, 173, 1211–1221. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Schubert, G. Geodynamics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1982; pp. 123–131. [Google Scholar]
- Braitenberg, C.; Ebbing, J.; Götze, H.J. Inverse modelling of elastic thickness by convolution method—The eastern Alps as a case example. Earth Planet. Sci. Lett. 2002, 202, 387–404. [Google Scholar] [CrossRef]
- Wienecke, S.; Braitenberg, C. A new analytical solution estimating the flexural rigidity in the Central Andes. Geophys. J. Int. 2007, 789–794. [Google Scholar] [CrossRef] [Green Version]
- Dill, R.; Klemann, V.; Martinec, Z.; Tesauro, M. Applying local Green’s functions to study the influence of the crustal structure on hydrological loading displacements. J. Geodyn. 2015, 88, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Kaban, M.K.; Chen, B.; Tesauro, M.; Petrunin, A.G.; El Khrepy, S.; Al-Arifi, N. Reconsidering effective elastic thickness estimates by incorporating the effect of sediments: A case study for Europe. Geophys. Res. Lett. 2018, 45, 9523–9532. [Google Scholar] [CrossRef] [Green Version]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce: Boulder, CO, USA, 2009. Available online: https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf (accessed on 12 October 2020).
- Tesauro, M.; Kaban, M.K.; Cloetingh, S. EuCRUST-07: A new reference model for the European crust. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Kaban, M.K.; El Khrepy, S.; Al-Arifi, N.; Tesauro, M.; Stolk, W. Three dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes. J. Geophys. Res. Solid Earth 2016, 121. [Google Scholar] [CrossRef] [Green Version]
- Kaban, M.K.; Schwintzer, P.; Tikhotsky, S.A. Global isostatic residual geoid and isostatic gravity anomalies. Geophys. J. Int. 1999, 136, 519–536. [Google Scholar] [CrossRef] [Green Version]
- Kaban, M.K.; Schwintzer, P.; Reigber, C. A new isostatic model of the lithosphere and gravity field. J. Geodesy 2004, 78, 368–385. [Google Scholar] [CrossRef]
- Kaban, M.K.; Mooney, W.D. Density structure of the lithosphere in the Southwestern United States and its tectonic significance. J. Geophys. Res. 2001, 106, 721–740. [Google Scholar] [CrossRef] [Green Version]
- Mooney, W.D.; Kaban, M.K. The North American Upper Mantle: Density, Composition, and Evolution. J. Geophys. Res. 2010, 115, B12424. [Google Scholar] [CrossRef]
- Christensen, N.I.; Mooney, W.D. Seismic velocity structure and composition of the continental crust: A global review. J. Geophys. Res. 1995, 100, 9761–9788. [Google Scholar] [CrossRef]
- Yegorova, T.; Gobarenko, V. Structure of the Earth’s Crust and Upper Mantle of the West-and East-Black Sea Basins Revealed from Geophysical Data and Its Tectonic Implications; Geological Society Special Publications; Geological Society: London, UK, 2010; Volume 340, pp. 23–42. [Google Scholar] [CrossRef]
- Yegorova, T.; Gobarenko, V.; Yanovskaya, T. Lithosphere structure of the Black Sea from 3-D gravity analysis and seismic tomography. Geophys. J. Int. 2013, 193, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Brocher, T.M. Empirical relations between elastic wavespeeds and density in the Earth’s crust. B. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
- Ismail-Zadeh, A.; Adamia, S.; Chabukiani, A.; Chelidze, T.; Cloetingh, S.; Floyd, M.; Gorshkov, A.; Gvishiani, A.; Ismail-Zadeh, T.; Kaban, M.K.; et al. Geodynamics, seismicity and seismic hazards of the Caucasus. Earth Sci. Rev. 2020, 207, 103222. [Google Scholar] [CrossRef]
- Khesin, B.E.; Eppelbaum, L.V. Development of 3D gravity/magnetic models of earth’s crust in complicated regions of Azerbaijan. In Proceedings of the Symposium of the European Association of Geophysics and Engineering, London, UK, 11–14 June 2007; European Association of Geoscientists & Engineers: London, UK, 2007; Volume P343, pp. 1–5. [Google Scholar] [CrossRef]
- Abilkhasimov, K.B. Peculiarities of Formation of Natural Reservoirs in Paleozoic Sediments of the Caspian Depression and Estimation of Their Oil and Gas Perspectives; Publishing House of the Academy of Natural Sciences: Moscow, Russia, 2016; pp. 6–16. (In Russian) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaban, M.K.; Gvishiani, A.; Sidorov, R.; Oshchenko, A.; Krasnoperov, R.I. Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area. Appl. Sci. 2021, 11, 512. https://doi.org/10.3390/app11020512
Kaban MK, Gvishiani A, Sidorov R, Oshchenko A, Krasnoperov RI. Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area. Applied Sciences. 2021; 11(2):512. https://doi.org/10.3390/app11020512
Chicago/Turabian StyleKaban, Mikhail K., Alexei Gvishiani, Roman Sidorov, Alexei Oshchenko, and Roman I. Krasnoperov. 2021. "Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area" Applied Sciences 11, no. 2: 512. https://doi.org/10.3390/app11020512
APA StyleKaban, M. K., Gvishiani, A., Sidorov, R., Oshchenko, A., & Krasnoperov, R. I. (2021). Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area. Applied Sciences, 11(2), 512. https://doi.org/10.3390/app11020512