Characterization of Escherichia coli Strains Derived from Cow Milk of Subclinical and Clinical Cases of Mastitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Sampling and Analyses
2.2. Bacterial Strains
2.3. Antimicrobial Susceptibility Testing and Detection of Extended-Spectrum Beta-Lactamases (ESBL)
2.4. Evaluation of the Effectiveness of Dipping Agents
2.5. Evaluation of Biofilm Formation
2.6. Statistical Analysis
3. Results
3.1. Antibiotic Susceptibility Analysis
3.2. Assessment of Biofilm Formation
3.3. Evaluation of Resistance to Dipping Agents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Dairy Federation. Bovine mastitis: Definitions and guidelines for diagnosis. Bull. Intern. Dairy Fed. 1987, 211, 3–8. [Google Scholar]
- Hillerton, J.E.; Berry, E.A. A review treating mastitis in the cow-a tradition or an archaism. J. Appl. Microbiol. 2005, 98, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Kudi, A.C.; Bray, M.P.; Niba, A.T.; Kalla, D.J.V. Mastitis causing pathogen within the dairy cattle environment. Int. J. Biol. Sci. 2009, 1, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.Z.; Liu, X.L.; Xu, A.J.; Zhi, X. Relationship of somatic cell count with milk yield and composition in Chinese Holstein population. Agric. Sci. China 2010, 9, 1492–1496. [Google Scholar] [CrossRef]
- Cinar, M.; Serbester, U.; Ceyhan, A.; Gorgulu, M. Effect of somatic cell count on milk yield and composition of first and second lactation dairy cows. Ital. J. Anim. Sci. 2015, 14, 105–108. [Google Scholar] [CrossRef] [Green Version]
- European Community. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin; European Parliament, Council of the European Union: Brussels, Belgium, 2004; Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32004R0853 (accessed on 7 January 2021).
- US Food and Drug Administration. Grade ‘A’ Pasteurized Milk Ordinance. 2017. Available online: https://www.fda.gov/media/114169/download (accessed on 14 December 2020).
- Zaatout, N.; Ayachi, A.; Kecha, M. Interaction of primary mammary bovine epithelial cells with biofilm-forming staphylococci associated with subclinical bovine mastitis. Iran J. Vet. Res. 2019, 20, 27–32. [Google Scholar]
- EFSA Scientific Report of EFSA Prepared by the Animal Health and Animal Welfare Unit on the Effects of Farming Systems on Dairy Cow Welfare and Disease (2009). Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2009.1143r (accessed on 21 November 2020).
- Shaheen, M.; Tantary, H.A.; Nabi, S.U. A treatise on bovine mastitis: Disease and disease economics, etiological basis, risk factors, impact on human health, therapeutic management, prevention and control strategy. J. Adv. Dairy Res. 2016, 4, 150. [Google Scholar]
- Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial biofilms. Pathog. Dis. 2016, 74, ftw006. [Google Scholar] [CrossRef] [Green Version]
- NandaKafle, G.; Seale, T.; Flint, T.; Nepal, M.; Venter, S.N.; Brözel, V.S. Distribution of diverse Escherichia coli between cattle and pasture. Microbes Environ. 2017, 32, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Suojala, L.; Kaartinen, L.; Pyörälä, S. Treatment for bovine Escherichia coli mastitis–An evidence-based approach. J. Vet. Pharmacol. Ther. 2013, 36, 521–531. [Google Scholar] [CrossRef]
- Rao, S.P.N.; Rama, P.S.; Gurushanthappa, V.; Manipura, R.; Srinivasan, K. Extended-Spectrum Beta-Lactamases Producing Escherichia coli and Klebsiella pneumoniae: A Multi-Centric Study across Karnataka. J. Lab. Physicians 2014, 6, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Skowron, K.; Wałecka-Zacharska, E.; Grudlewska, K.; Wiktorczyk, N.; Kaczmarek, A.; Gryń, G.; Kwiecińska-Piróg, J.; Juszczuk, K.; Paluszak, Z.; Kosek-Paszkowska, K.; et al. Characteristics of Listeria monocytogenes strains isolated from milk and humans and the possibility of milk-borne strains transmission. Pol. J. Microbiol. 2019, 68, 353–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, C.; Pacheco, D.; Soares, L.; Romão, R.; Moitoso, M.; Maldonado, J.; Guix, R.; Simões, J. Prevalence of contagious and environmental mastitis-causing bacteria in bulk tank milk and its relationships with milking practices of dairy cattle herds in São Miguel Island (Azores). Trop. Anim. Health Prod. 2016, 48, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skowron, K.; Sękowska, A.; Kaczmarek, A.; Grudlewska, K.; Budzyńska, A.; Białucha, A.; Gospodarek-Komkowska, E. Comparison of the effectiveness of dipping agents on bacteria causing mastitis in cattle. Ann. Agric. Environ. Med. 2019, 26, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Hinthong, W.; Pumipuntu, N.; Santajit, S.; Kulpeanprasit, S.; Buranasinsup, S.; Sookrung, N.; Chaicumpa, W.; Aiumurai, P.; Indrawattana, N. Detection and drug resistance profile of Escherichia coli from subclinical mastitis cows and water supply in dairy farms in Saraburi Province. Thailand Peer J. 2017, 5, e3431. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Ding, L.; Han, B.; Piepers, S.; Naqvi, S.A.; Barkema, H.W.; Ali, T.; Vliegher, S.D.; Xu, S.; Gao, J. Characteristics of Escherichia coli isolated from bovine mastitis exposed to subminimum inhibitory concentrations of cefalotin or ceftazidime. BioMed Res. Int. 2018, 2018, 4301628. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameter, 8.0, 73. 2018. Available online: www.eucast.org/clinical_breakpoints/ (accessed on 21 November 2020).
- Jarlier, V.; Nicolas, M.; Fourierm, G.; Philippon, A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev. Infect Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Kwiecińska-Piróg, J.; Bogiel, T.; Skowron, K.; Wieckowska, E.; Gospodarek, E. Proteus mirabilis biofilm–qualitative and quantitative colorimetric methods-based evaluation. Braz. J. Microbiol. 2015, 45, 1423–1431. [Google Scholar]
- Abebe, R.; Hatiya, H.; Abera, M.; Megersa, B.; Asmare, K. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res. 2016, 12, 270. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Chakravarty, A.K. Genetics and Breeding for Disease Resistance of Livestock; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Economou, V.; Gousia, G. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiss Veterinary Society (SVS) and Federal Food Safety and Veterinary Office (FSVO). Umsichtiger Einsatz von Antibiotika bei Rindern und Schweinen: Therapieleitfaden für Tierärztinnen und Tierärzte. Therapieleitfaden für Tierärztinnen und Tierärzte. 2018. Available online: https://www.blv.admin.ch/dam/blv/de/therapieleitfaden-de.pdf (accessed on 21 November 2020).
- World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine–5th Rev. 2017. Available online: http://www.who.int/foodsafety/publications/antimicrobials-fifth/en/ (accessed on 21 November 2020).
- Dahmen, S.; Métayer, V.; Gay, E. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet. Microbiol. 2013, 162, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Moser, A.; Stephan, R.; Corti, S. Resistance profiles and genetic diversity of Escherichia coli strains isolated from acute bovine mastitis. Schweiz. Arch. Für Tierheilkd. 2013, 155, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timofte, D.; Maciuca, I.E.; Evans, N.J.; Williams, H.; Wattret, A.; Fick, J.C.; Williams, J.C. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob. Agents Chemother. 2014, 58, 789–794. [Google Scholar] [CrossRef] [Green Version]
- Eisenberger, D.; Carl, A.; Balsliemke, J.; Kämpf, P.; Nickel, S.; Schulze, G.; Valenza, G. Molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolates from milk samples of dairy cows with mastitis in Bavaria, Germany. Microb. Drug Resist. 2018, 24, 505–510. [Google Scholar] [CrossRef]
- Ameen, F.; Reda, S.A.; El-Shatoury, S.A.; Riad, E.M.; Enany, M.E.; Alarfaj, A.A. Prevalence of antibiotic resistant mastitis pathogens in dairy cows in Egypt and potential biological control agents produced from plant endophytic actinobacteria. J. Biol. Sci. 2019, 26, 1492–1498. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Käppeli, N.; Morach, M.; Eicher, C.; Corti, S.; Stephan, R. Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet. Rec. Open 2019, 6, e000369. [Google Scholar] [CrossRef] [Green Version]
- Chehabi, C.N.; Nonnemann, B.; Astrup, L.B.; Farre, M.; Pedersen, K. In vitro antimicrobial resistance of causative agents to clinical mastitis in Danish dairy cows. Foodborne Pathog. Dis. 2019, 16, 562–572. [Google Scholar] [CrossRef]
- Pelletier, J.S.; Miller, D.; Liang, B.; Capriotti, J.A.A. In vitro efficacy of a povidone-iodine 0.4% and dexamethasone 0.1% suspension against ocular pathogens. J. Cataract Refract. Surg. 2011, 37, 763–766. [Google Scholar] [CrossRef]
- Boonyayatra, S.; Rin-ut, S.; Punyapornwithaya, V. Association of intramammary infection caused by biofilm-producing pathogens with chronic mastitis in dairy cows. Int. J. Dairy Sci. 2014, 9, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.B.C.; Zanardo, L.G.; Galvão, N.N.; Carvalho, I.A.; Nero, L.A.; Moreira, M.A.S. Escherichia coli from clinical mastitis: Serotypes and virulence factors. J. Vet. Diagn. Investig. 2011, 23, 1146–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubravka, M.; Prunić, B.; Velhner, M.; Todorović, D.; Polaček, V. Investigation of biofilm formation and phylogenetic typing of Escherichia coli strains isolated from milk of cows with mastitis. Acta Vet. 2015, 65, 202–216. [Google Scholar]
Antibiotic | No. E. coli Subclinical (n = 109) | No. E. coli Clinical (n = 41) | p Value For The Resistant Strains of Both Groups | ||||
---|---|---|---|---|---|---|---|
R (%) | I (%) | S (%) | R (%) | I (%) | S (%) | ||
AM | 6 (5.5) a | 0 (0.0) | 103 (94.5) | 2 (4.9) a | 0 (0.0) | 39 (95.1) | 0.85 |
SAM | 1 (0.7) a | 0 (0.0) | 108 (99.1) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 0.40 |
AMC | 31 (28.4) a | 0 (0.0) | 78 (71.6) | 10 (24.4) a | 0 (0.0) | 31 (75.6) | 0.52 |
PIP | 6 (5.5) a | 2 (1.8) | 101 (92.7) | 1 (2.4) a | 1 (2.4) | 39 (95.1) | 0.26 |
TZP | 0 (0.0) a | 2 (1.8) | 107 (98.2) | 0 (0.0) a | 1 (2.4) | 40 (97.6) | 1.00 |
TIC | 13 (11.9) a | 0 (0.0) | 96 (88.1) | 3 (7.3) a | 0 (0.0) | 38 (92.7) | 0.29 |
TIM | 8 (7.3) a | 0 (0.0) | 101 (92.7) | 2 (4.9) a | 0 (0.0) | 39 (95.1) | 0.47 |
CTX | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 1 (2.4) | 40 (97.6) | 0.12 |
FOX | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 1 (2.4) a | 0 (0.0) | 40 (97.6) | 0.12 |
CAZ | 1 (0.9) a | 4 (3.7) | 104 (95.4) | 0 (0.0) b | 6 (14.6) | 35 (85.4) | 0.02 |
CRO | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
CTP | 4 (3.7) a | 0 (0.0) | 105 (96.3) | 1 (2.4) a | 0 (0.0) | 40 (97.6) | 0.59 |
CXM | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
FEP | 0 (0.0) a | 1 (1.8) | 108 (99.1) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
DOR | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
ETP | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 1 (2.4) | 40 (97.6) | 1.00 |
IPM | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 1 (2.4) | 40 (97.6) | 1.00 |
MEM | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
ATM | 2 (1.8) a | 10 (9.2) | 97 (89.0) | 0 (0.0) a | 1 (2.4) | 40 (97.6) | 0.18 |
CIP | 0 (0.0) a | 6 (5.5) | 103 (94.5) | 2 (3.4) a | 3 (7.3) | 38 (92.7) | 0.06 |
LVX | 2 (1.8) a | 6 (5.5) | 101 (92.7) | 0 (0.0) a | 4 (9.8) | 37 (90.2) | 0.53 |
MXF | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
NOR | 7 (6.4) a | 3 (2.8) | 99 (90.8) | 1 (2.4) a | 4 (9.8) | 36 (87.8) | 0.17 |
OFX | 11 (10.1) a | 1 (0.9) | 97 (89.0) | 4 (9.8) a | 4 (9.8) | 33 (80.5) | 0.09 |
AN | 1 (0.9) a | 0 (0.0) | 108 (99.1) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 0.34 |
GM | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 1 (1.7) a | 0 (0.0) | 41 (100.0) | 0.19 |
NET | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
NN | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
TGC | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 1 (2.4) | 40 (97.6) | 1.00 |
C | 0 (0.0) a | 0 (0.0) | 109 (100.0) | 0 (0.0) a | 0 (0.0) | 41 (100.0) | 1.00 |
SXT | 2 (1.8) a | 0 (0.0) | 107 (98.2) | 1 (2.4) a | 0 (0.0) | 40 (97.6) | 0.77 |
The Intensity of Biofilm Formation | Number of Strains | p Value (chi-Square Test) | Total (n = 60) | |
---|---|---|---|---|
E. coli Subclinical (n = 30) | E. coli Clinical (n = 30) | |||
Lack | 11 1 (36.7) 2,a | 11 (36.7) a | p = 1.0 | 22 (36.7) |
Weak | 14 (46.7) a | 13 (43.3) a | p = 0.63 | 27 (45.0) |
Moderate | 3 (10.0) a | 6 (20.0) b | p = 0.05 | 9 (15.0) |
Strong | 2 (6.6) a | 0 (0.0) b | p = 0.009 | 2 (3.3) |
Type of Dipping Agent | Number of Strains | p Value (chi-Square Test) | Total (n = 60) | |
---|---|---|---|---|
E. coli Subclinical (n = 30) | E. coli Clinical (n = 30) | |||
Povidone iodine | 96.39 a | 96.23 a | p = 0.95 | 22 (36.7) |
Stabilized iodine | 97.92 a | 96.82 a | p = 0.63 | 27 (45.0) |
Chlorhexidine | 96.19 a | 96.96 a | p = 0.76 | 9 (15.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grudlewska-Buda, K.; Skowron, K.; Wałecka-Zacharska, E.; Wiktorczyk-Kapischke, N.; Bystroń, J.; Kaczmarek, A.; Gospodarek-Komkowska, E. Characterization of Escherichia coli Strains Derived from Cow Milk of Subclinical and Clinical Cases of Mastitis. Appl. Sci. 2021, 11, 541. https://doi.org/10.3390/app11020541
Grudlewska-Buda K, Skowron K, Wałecka-Zacharska E, Wiktorczyk-Kapischke N, Bystroń J, Kaczmarek A, Gospodarek-Komkowska E. Characterization of Escherichia coli Strains Derived from Cow Milk of Subclinical and Clinical Cases of Mastitis. Applied Sciences. 2021; 11(2):541. https://doi.org/10.3390/app11020541
Chicago/Turabian StyleGrudlewska-Buda, Katarzyna, Krzysztof Skowron, Ewa Wałecka-Zacharska, Natalia Wiktorczyk-Kapischke, Jarosław Bystroń, Agnieszka Kaczmarek, and Eugenia Gospodarek-Komkowska. 2021. "Characterization of Escherichia coli Strains Derived from Cow Milk of Subclinical and Clinical Cases of Mastitis" Applied Sciences 11, no. 2: 541. https://doi.org/10.3390/app11020541
APA StyleGrudlewska-Buda, K., Skowron, K., Wałecka-Zacharska, E., Wiktorczyk-Kapischke, N., Bystroń, J., Kaczmarek, A., & Gospodarek-Komkowska, E. (2021). Characterization of Escherichia coli Strains Derived from Cow Milk of Subclinical and Clinical Cases of Mastitis. Applied Sciences, 11(2), 541. https://doi.org/10.3390/app11020541