Numerical Analysis of Ultrasonic Multiple Scattering for Fine Dust Number Density Estimation
Abstract
:1. Introduction
2. Theoretical Background on Multiple Scattering of Acoustic Waves
3. Number Density Estimation Approach Based on Independent Scattering Approximation
4. Numerical Simulations
5. Results and Discussion
5.1. Multiply Scattered Acoustic Waves
5.2. Number Density Estimation Results
5.3. Effects of Particle Volume Fractions
5.4. Effects of Particle Shapes
6. Conclusions
- Independent scattering approximation can be used to estimate the number density, especially when the volume fraction of fine dust particles is low.
- The proposed ultrasonic wave data processing approach enables the estimation of the number density of fine dust particles with an average error of 43.4% in the frequency band 1–10 MHz (ka ≤ 1) at a particle volume fraction of 1%.
- Variation of fine particle shapes is a cause of uncertainty in number density estimation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shridhar, V.; Khillare, P.S.; Agarwal, T.; Ray, S. Metallic species in ambient particulate matter at rural and urban location of Delhi. J. Hazard. Mater. 2010, 175, 600–607. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention Particle Pollution. Available online: https://www.cdc.gov/air/particulate_matter.html (accessed on 10 December 2020).
- Amaral, S.S.; de Carvalho, J.A.; Costa, M.A.M.; Pinheiro, C. An overview of particulate matter measurement instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef] [Green Version]
- Hauck, H.; Berner, A.; Gomiscek, B.; Stopper, S.; Puxbaum, H.; Kundi, M.; Preining, O. On the equivalence of gravimetric PM data with TEOM and beta-attenuation measurements. J. Aerosol Sci. 2004, 35, 1135–1149. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Park, K.; Lowenthal, D.H.; Robinson, N.F.; Park, K.; Maglian, K.A. Comparison of particle light scattering and fine particulate matter mass in central california). J. Air Waste Manag. Assoc. 2006, 56, 398–410. [Google Scholar] [CrossRef]
- Chimenti, D.E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef] [PubMed]
- Safaeinili, A. Air-coupled ultrasonic estimation of viscoelastic stiffnesses in plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 1171–1180. [Google Scholar] [CrossRef]
- Choi, H.; Song, H.; Tran, Q.N.V.; Roesler, J.R.; Popovics, J.S. Concrete International. 2016. Available online: https://www.concrete-international.nl/en/ (accessed on 20 December 2020).
- Zhang, J.; Drinkwater, B.W.; Wilcox, P.D. Defect characterization using an ultrasonic array to measure the scattering coefficient matrix. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2254–2265. [Google Scholar] [CrossRef]
- Fu, S.; Lou, W.; Wang, H.; Li, C.; Chen, Z.; Zhang, Y. Evaluating the effects of aluminum dust concentration on explosions in a 20L spherical vessel using ultrasonic sensors. Powder Technol. 2020, 367, 809–819. [Google Scholar] [CrossRef]
- Kazys, R.; Sliteris, R.; Mazeika, L.; Van den Abeele, L.; Nielsen, P.; Snellings, R. Ultrasonic monitoring of variations in dust concentration in a powder classifier. Powder Technol. 2020, in press. [Google Scholar] [CrossRef]
- Tourin, A.; Derode, A.; Peyre, A.; Fink, M. Transport parameters for an ultrasonic pulsed wave propagating in a multiple scattering medium. J. Acoust. Soc. Am. 2000, 108, 503–512. [Google Scholar] [CrossRef]
- Sheng, P.; van Tiggelen, B. Introduction to wave scattering, localization and mesoscopic phenomena. Second edition. Waves Random Complex Media 2007, 17, 235–237. [Google Scholar] [CrossRef]
- Foldy, L.L. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 1945, 67, 107–119. [Google Scholar] [CrossRef]
- Lax, M. Multiple scattering of waves. II. the effective field in dense systems. Phys. Rev. 1952, 85, 621–629. [Google Scholar] [CrossRef]
- Waterman, P.C.; Truell, R. Multiple scattering of waves. J. Math. Phys. 1961, 2, 512–537. [Google Scholar] [CrossRef]
- Lloyd, P.; Berry, M.V. Wave propagation through an assembly of spheres: IV. Relations between different multiple scattering theories. Proc. Phys. Soc. 1967, 91, 678–688. [Google Scholar] [CrossRef]
- Lagendijk, A.; Van Tiggelen, B.A. Resonant multiple scattering of light. Phys. Rep. 1996, 29, 143–215. [Google Scholar] [CrossRef]
- Tourin, A.; Fink, M.; Derode, A. Multiple scattering of sound. Waves Random Media 2000, 10, R31–R60. [Google Scholar] [CrossRef]
- Graff, K.F. Wave Motion in Elastic Solids; Dover Publications Inc.: New York, NY, USA, 1975; ISBN 0486667456. [Google Scholar]
- Derode, A.; Tourin, A.; Fink, M. Random multiple scattering of ultrasound. I. Coherent and ballistic waves. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2001, 64, 7. [Google Scholar] [CrossRef]
- Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef] [PubMed]
- Berenger, J.P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Chekroun, M.; Le Marrec, L.; Lombard, B.; Piraux, J. Time-domain numerical simulations of multiple scattering to extract elastic effective wavenumbers. Waves Random Complex Media 2012, 22, 398–422. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y. Models for wave propagation in two-dimensional random composites: A comparative study. J. Acoust. Soc. Am. 2010, 127, 2201–2209. [Google Scholar] [CrossRef]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
Material Properties | ||
Wave Speed (m/s) | Mass Density (kg/m3) | |
Air | 343 | 1.2754 |
Fine dust particle | 343 | 1050 |
Simulation Parameters | ||
Number of grid points (Nx × Ny) | 25,000 × 1000 | |
Grid spacing (dx and dy) | 0.057 μm | |
Time step (dt) | 0.0166 ns | |
Time duration (T) | 8 μs | |
Number of sensing points at each medium | 1050 (35 × 30) | |
Sensor spacing along x axis | 36 μm | |
Sensor spacing along y axis | 1.65 μm | |
Fine dust particle volume fractions | 1, 2, 5, 10, and 15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Woo, U.; Choi, H. Numerical Analysis of Ultrasonic Multiple Scattering for Fine Dust Number Density Estimation. Appl. Sci. 2021, 11, 555. https://doi.org/10.3390/app11020555
Song H, Woo U, Choi H. Numerical Analysis of Ultrasonic Multiple Scattering for Fine Dust Number Density Estimation. Applied Sciences. 2021; 11(2):555. https://doi.org/10.3390/app11020555
Chicago/Turabian StyleSong, Homin, Ukyong Woo, and Hajin Choi. 2021. "Numerical Analysis of Ultrasonic Multiple Scattering for Fine Dust Number Density Estimation" Applied Sciences 11, no. 2: 555. https://doi.org/10.3390/app11020555
APA StyleSong, H., Woo, U., & Choi, H. (2021). Numerical Analysis of Ultrasonic Multiple Scattering for Fine Dust Number Density Estimation. Applied Sciences, 11(2), 555. https://doi.org/10.3390/app11020555