An Effective D-π-A Type Donor Material Based on 4-Fluorobenzoylacetonitrile Core Unit for Bulk Heterojunction Organic Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Synthesis of H3T-FOP
2.3. Synthesis of 4-Fluorobenzoylacetonitrile (1)
2.4. Synthesis of 3-5(-Bromothiophen-2-yl)-2-(4-Fluorobenzoyl) Acrylonitrile (2)
2.5. Synthesis of 2-(4-Fluorobenzoyl)-3-(5″-hexyl-[2,2′:5′,2″-Terthiophen]-5-yl) Acrylonitrile, (H3T-4-FOP)
2.6. Assembly of BHJ-OSC Device
2.7. Characterizations
3. Results and Discussion
3.1. Thermal Properties of H3T-4-FOP
3.2. Optical Properties of H3T-4-FOP
3.3. Electrochemical Properties of H3T-4-FOP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kippelen, B.; Bredas, J.-L. Organic Photovoltaics. Energy Environ. Sci. 2009, 2, 251–261. [Google Scholar] [CrossRef]
- Brabec, C.J. Organic photovoltaics: Technology and market. Sol. Energy Mater. Sol. Cells 2004, 83, 273–292. [Google Scholar] [CrossRef]
- Heeger, A.J. Semiconducting polymers: The third generation. Chem. Soc. Rev. 2010, 39, 2354–2371. [Google Scholar] [CrossRef] [PubMed]
- Darling, S.B.; You, F. The case for organic photovoltaic. RSC Adv. 2013, 3, 17633–17648. [Google Scholar] [CrossRef]
- Bagher, A.M. Comparison of organic solar cells and inorganic solar cells. Int. J. Renew. Sustain. Energy 2014, 3, 53–58. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Nazim, M.; Nazeeruddin, M.K.; Shin, H.-S. Stable perovskite solar cells using thiazolo [5,4-d]thiazole-core containing hole transporting material. Nano Energy 2018, 49, 372–379. [Google Scholar] [CrossRef]
- Emmott, C.J.M.; Rohr, J.A.; Quiles, M.C.; Kirchartz, T.; Urbina, A.; Daukes, N.J.E.; Nelson, J. Organic photovoltaic greenhouses: A unique application for semi-transparent PV? Energy Environ. Sci. 2015, 8, 1317–1328. [Google Scholar] [CrossRef]
- Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Adv. Mater. 2016, 28, 7821–7861. [Google Scholar] [CrossRef]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, H.S.; Guo, X.; Facchetti, A.; Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 2018, 3, 720. [Google Scholar] [CrossRef]
- Umeyama, T.; Igarashi, K.; Sasada, D.; Tamai, Y.; Ishida, K.; Koganezawa, T.; Ohtani, S.; Tanaka, K.; Ohkita, H.; Imahori, H. Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state. Chem. Sci. 2020, 11, 3250. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, N.; Salvador, M.; Strohm, S.; Heumueller, T.; Levchuk, I.; Wadsworth, A.; Bannock, J.H.; de Mello, J.C.; Egelhaaf, H.J.; Baran, D.; et al. Burn-in Free Nonfullerene-based Organic Solar. Cells Adv. Energy Mater. 2017, 7, 1700770. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.Z.; Xiao, Z.; Sun, K.; et al. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wang, J.; Gao, J.; Hu, Z.; Xu, C.; Zhang, X.; Zhang, F. Achieving 17.4% Efficiency of Ternary Organic Photovoltaics with Two Well-Compatible Nonfullerene Acceptors for Minimizing Energy Loss. Adv. Energy Mater. 2020, 10, 2001404. [Google Scholar] [CrossRef]
- Zhan, L.; Li, S.; Lau, T.-K.; Cui, Y.; Lu, X.; Shi, M.; Li, C.-Z.; Li, H.; Hou, J.; Chen, C. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 2020, 13, 635–645. [Google Scholar] [CrossRef]
- Lin, Y.; Nugraha, M.I.; Firdaus, Y.; Scaccabarozzi, A.D.; Anies, F.; Emwas, A.-H.; Yengel, E.; Zheng, X.; Liu, J.; Wahyudi, W.; et al. A simple n-dopant derived from diquat boosts the efficiency of organic solar cells to 18.3%. ACS Energy Lett. 2020, 5, 3663–3671. [Google Scholar] [CrossRef]
- Hu, D.; Yang, Q.; Chen, H.; Wobben, F.; Corre, V.M.L.; Singh, R.; Liu, T.; Ma, R.; Tang, H.; Koster, L.J.A.; et al. 15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy Environ. Sci. 2020, 13, 2134–2141. [Google Scholar] [CrossRef]
- Zhou, R.; Jiang, Z.; Yang, C.; Yu, J.; Feng, J.; Adil, M.A.; Deng, D.; Zou, W.; Zhang, J.; Lu, K.; et al. All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical Morphologies. Nat. Comm. 2019, 10, 5393. [Google Scholar] [CrossRef]
- Lee, H.; Mun, J.; Nguyen, N.N.; Rho, J.; Cho, K. Open-circuit voltage of organic solar cells: Effect of energetically and spatially non uniform distribution of molecular energy levels in the photoactive layer. Nano Energy 2020, 78, 105336. [Google Scholar] [CrossRef]
- Clarke, T.M.; Durrant, J.R. Charge photogeneration in organic solar cells. Chem. Rev. 2010, 110, 6736–6767. [Google Scholar] [CrossRef]
- Yang, B.; Guo, F.; Yuan, Y.; Xiao, Z.; Lu, Y.; Dong, Q.; Huang, J. Solution-Processed Fullerene-Based Organic Schottky Junction Devices for Large-Open-Circuit-Voltage Organic Solar Cells. Adv. Mater. 2013, 25, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Ecker, B.; Nolasco, J.C.; Pallares, J.; Marsal, L.F.; Posdorfer, J.; Parisi, J.; Von Hauff, E. Degradation Effects Related to the Hole Transport Layer in Organic Solar Cells. Adv. Funct. Mater. 2011, 21, 2705–2711. [Google Scholar] [CrossRef]
- Tamura, H.; Tsukada, M. Role of intermolecular charge delocalization on electron transport in fullerene aggregates. Phys. Rev. B 2012, 85, 054301. [Google Scholar] [CrossRef]
- Swick, S.M.; Alzola, J.M.; Sangwan, V.K.; Amsterdam, S.H.; Zhu, W.; Jones, L.O.; Riggs, N.P.; Facchetti, A.; Kohlstedt, K.L.; Schatz, G.C.; et al. Fluorinating π-Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells. Adv. Energy Mater. 2020, 10, 2000635. [Google Scholar] [CrossRef]
- An, N.; Cai, Y.; Wu, H.; Tang, A.; Zhang, K.; Hao, X.; Ma, Z.; Guo, Q.; Ryu, H.S.; Woo, H.Y.; et al. Solution-Processed Organic Solar Cells with High Open-Circuit Voltage of 1.3 V and Low Non-Radiative Voltage Loss of 0.16 V. Adv. Mater. 2002, 10, 2002122. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jia, Z.; Zhang, Q.; Wu, Z.; Qin, H.; Yang, J.; Wen, S.; Woo, H.Y.; Ma, W.; Yang, R.; et al. Toward Efficient All-Polymer Solar Cells via Halogenation on Polymer Acceptors. Appl. Mater. Interfaces 2020, 12, 33028–33038. [Google Scholar] [CrossRef]
- Leclerc, N.; Chávez, P.; Ibraikulov, O.A.; Heiser, T.; Lévêque, P. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: A review. Polymers 2016, 8, 11. [Google Scholar] [CrossRef]
- Zhou, R.; Xia, B.; Li, H.; Wang, Z.; Yang, Y.; Zhang, J.; Laursen, B.W.; Lu, K.; Wei, Z. Fluorination Induced Donor to Acceptor Transformation in A1-D-A2-D-A1 Type Photovoltaic Small Molecules. Front. Chem. 2018, 6, 384. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, K.K.; Yan, J.; Wu, Z.; Liu, F.; Xiao, F.; Chang, Z.F.; Wu, H.B.; Cao, Y.; Russel, T.P. Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. J. Am. Chem. Soc. 2016, 138, 7687–7697. [Google Scholar] [CrossRef]
- Ameen, S.; Rub, M.A.; Kosa, S.A.; Alamry, K.A.; Akhtar, M.S.; Shin, H.-S.; Seo, H.-K.; Asiri, A.M.; Nazeeruddin, M.K. Perovskite solar cells: Influence of hole transporting materials on power conversion efficiency. ChemSusChem 2016, 9, 10–27. [Google Scholar] [CrossRef]
- Nilsson, S.; Bernasik, A.; Budkowski, A.; Moons, E. Morphology and phase segregation of spin-casted films of polyfluorene/PCBM blends. Macromolecules 2007, 40, 8291–8301. [Google Scholar] [CrossRef]
- Matsumoto, F.; Iwai, T.; Moriwaki, K.; Takao, Y.; Ito, T.; Mizuno, T.; Ohno, T. Controlling the Polarity of Fullerene Derivatives to Optimize Nanomorphology in Blend Films. ACS Appl. Mater. Interfaces 2016, 8, 4803–4810. [Google Scholar] [CrossRef]
- Chen, X.; Feng, H.; Lin, Z.; Jiang, Z.; He, T.; Yin, S.; Wan, X.; Chen, Y.; Zhang, Q.; Qiu, H. Impact of end-capped groups on the properties of dithienosilole-based small molecules for solution-processed organic solar cells. Dyes Pigments 2017, 147, 183–189. [Google Scholar] [CrossRef]
- Nazim, M.; Abdullah; Akhtar, M.S.; Kim, E.-B.; Shin, H.-S.; Ameen, S. Underlying effects of diiodooctane as additive on the performance of bulk heterojunction organic solar cells based small organic molecule of isatin-core moiety. Synth. Met. 2020, 261, 116304. [Google Scholar] [CrossRef]
- Abdullah; Kim, E.-B.; Akhtar, M.S.; Shin, H.-S.; Ameen, S. Benzoselenadiazole-core asymmetric D-A-A small molecule for solution processed bulk heterojunction organic solar cells. Int. J. Energy Res. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Shen, J.; Yang, D.; Liu, Y.; Qin, S.; Zhang, J.; Sun, J.; Liu, C.; Liu, C.; Zhao, X.; Chu, C.; et al. Copper-Catalyzed Aerobic Oxidative Coupling of Aromatic Alcohols and Acetonitrile to β-Ketonitriles. Org. Lett. 2014, 16, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Peng, B.; Liu, B.; Li, Y.; He, Y.; Zhou, K.; Pan, C. Conjugated Copolymers of Cyano substituted Poly(p-phenylene vinylene) with Phenylene Ethynylene and Thienylene Vinylene Moieties: Synthesis, Optical, and Electrochemical Properties. J. Appl. Polym. Sci. 2010, 115, 1480–1488. [Google Scholar] [CrossRef]
- Alam, S.; Akhtar, M.S.; Abdullah; Kim, E.-B.; Shin, H.-S.; Ameen, S. New energetic indandione based planar donor for stable and efficient organic solar cells. Sol. Energy 2020, 201, 649–657. [Google Scholar] [CrossRef]
- Min, J.; Luponosov, Y.N.; Gerl, A.; Polinskaya, M.S.; Peregudova, S.M.; Dmitryakov, P.V.; Bakirov, A.V.; Shcherbina, M.A.; Chvalun, S.N.; Grigorian, S.; et al. Alkyl chain engineering of solution-processable star-shaped molecules for high-performance organic solar cells. Adv. Energy Mater. 2014, 4, 1301234. [Google Scholar] [CrossRef]
- Alam, S.; Akhtar, M.S.; Abdullah; Kim, E.-B.; Shin, H.-S.; Ameen, S. Planar D-π-A configured dimethoxy vinylbenzene based small organic molecule for solution-processed bulk heterojunction organic solar cells. Appl. Sci. 2020, 10, 5743. [Google Scholar] [CrossRef]
- Hestand, N.J.; Spano, F.C. Expanded theory of H- and J-Molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 2018, 118, 7069–7163. [Google Scholar] [CrossRef] [PubMed]
- Aytun, T.; Barreda, L.; Carretero, A.R.; Lehrman, J.A.; Stupp, S.I. Improving Solar Cell Efficiency through Hydrogen Bonding: A Method for Tuning Active Layer Morphology. Chem. Mater. 2015, 27, 1201–1209. [Google Scholar] [CrossRef]
- Nazim, M.; Ameen, S.; Akhtar, M.S.; Shin, H.-S. Asymmetric, efficient π-conjugated organic semiconducting chromophore for bulk-heterojunction organic photovoltaics. Dyes Pigments 2018, 149, 141–148. [Google Scholar] [CrossRef]
- Do, T.T.; Pham, H.D.; Manzhos, S.; Bell, J.M.; Sonar, P. Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks. ACS Appl. Mater. Interfaces 2017, 9, 16967–16976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laure, B.; Christos, L.C.; Nicolas, L.; Georges, H.; Joannis, K.K.; Rony, B.; Patrick, L.; Thomas, H.A. [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: Design, synthesis, material characterization and device performances. J. Mater. Chem. 2009, 19, 4946–4951. [Google Scholar]
- An, B.-K.; Lee, D.-S.; Lee, J.-S.; Park, Y.-S.; Song, H.-S.; Park, S.Y. Strongly fluorescent organogel system comprising fibrillar self-Assembly of a trifluoromethyl-based cyanostilbene derivative. J. Am. Chem. Soc. 2004, 126, 10232–10233. [Google Scholar] [CrossRef]
- Zawodzki, M.; Roland, R.; Sferrazza, M.; Kettner, O.; Friedel, B. Interfacial morphology and effects on device performance of organic bilayer heterojunction solar cells. ACS Appl. Mater. Interfaces 2015, 7, 16161–16168. [Google Scholar] [CrossRef] [PubMed]
- Fijahi, L.; Akhtar, M.S.; Abdullah; Kim, E.-B.; Seo, H.-K.; Shin, H.-S.; Ameen, S. Investigation of newly designed asymmetric chromophore in view of power conversion efficiency improvements for organic solar cells. Mater. Lett. 2020, 260, 126865. [Google Scholar] [CrossRef]
- He, G.; Wan, X.; Li, Z.; Zhang, Q.; Long, G.; Liu, Y.; Hou, Y.; Zhang, M.; Chen, Y. Impact of fluorinated end groups on the properties of acceptor–donor–acceptor type oligothiophenes for solution-processed photovoltaic cells. J. Mater. Chem. C 2014, 2, 1337–1345. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, W.; Li, J.; Fang, T.; Li, W.; Zhang, J.; Feng, F.; Li, W. The Influence of Fluorination on Nano-Scale Phase Separation and Photovoltaic Performance of Small Molecular/PC71BM Blends. Nanomaterials 2016, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.N.; Lee, W.H.; Park, J.B.; Kim, J.H.; Hwang, D.H.; Kang, I.N. Synthesis and characterization of fluorine atom substituted new BDT-based polymers for use in organic solar cells. Synth. Met. 2015, 210, 273–281. [Google Scholar] [CrossRef]
- Zhang, C.; Song, X.; Liu, K.K.; Zhang, M.; Qu, J.; Yang, C.; Yuan, G.Z.; Mahmood, A.; Liu, F.; He, F.; et al. Electron-deficient and quinoid central unit engineering for unfused ring-based A1–D–A2–D–A1-type acceptor enables high performance nonfullerene polymer solar cells with high Voc and PCE simultaneously. Small 2020, 16, 1907681. [Google Scholar]
Chromophore | λmax a (nm) | λmax b (nm) | λmax c (nm) | λmax d (nm) | HOMO e (eV) | LUMO f (eV) | Egopt g (eV) |
---|---|---|---|---|---|---|---|
H3T-4-FOP | 495 | 505 | 625 | 670 | −5.27 | −3.26 | 2.01 |
H3T-4-FOP: PC61BM | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
1:1 (w/w) | 0.772 | 10.22 | 41 | 3.21 |
1:2 (w/w) | 0.782 | 11.18 | 50 | 4.38 |
1:3 (w/w) | 0.782 | 9.83 | 51 | 3.91 |
Organic Chromophores | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Reference |
---|---|---|---|---|---|
RTh-NR:PC61BM | 0.59 | 8.70 | 32 | 1.65 | 34 |
RT-BSe-F:PC60BM | 0.71 | 12.56 | 42 | 3.75 | 35 |
OMe-BBTz:PC61BM | 0.69 | 8.71 | 58 | 3.53 | 48 |
DCAE7T-F1:PC61BM | 0.83 | 5.55 | 50 | 2.26 | 49 |
DFP-BT-TPA:PC71BM | 0.90 | 6.12 | 39 | 2.17 | 50 |
PBDTFT-ttTPD:PC71BM | 0.79 | 8.57 | 48 | 3.27 | 51 |
H3T-4-FOP:PC61BM (1:1, w/w) | 0.772 | 10.22 | 41 | 3.21 | This work |
H3T-4-FOP:PC61BM (1:2, w/w) | 0.782 | 11.18 | 50 | 4.38 | This work |
H3T-4-FOP:PC61BM (1:3, w/w) | 0.782 | 9.83 | 51 | 3.91 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, S.; Akhtar, M.S.; Abdullah; Kim, E.-B.; Shin, H.-S.; Ameen, S. An Effective D-π-A Type Donor Material Based on 4-Fluorobenzoylacetonitrile Core Unit for Bulk Heterojunction Organic Solar Cells. Appl. Sci. 2021, 11, 646. https://doi.org/10.3390/app11020646
Alam S, Akhtar MS, Abdullah, Kim E-B, Shin H-S, Ameen S. An Effective D-π-A Type Donor Material Based on 4-Fluorobenzoylacetonitrile Core Unit for Bulk Heterojunction Organic Solar Cells. Applied Sciences. 2021; 11(2):646. https://doi.org/10.3390/app11020646
Chicago/Turabian StyleAlam, Shabaz, M. Shaheer Akhtar, Abdullah, Eun-Bi Kim, Hyung-Shik Shin, and Sadia Ameen. 2021. "An Effective D-π-A Type Donor Material Based on 4-Fluorobenzoylacetonitrile Core Unit for Bulk Heterojunction Organic Solar Cells" Applied Sciences 11, no. 2: 646. https://doi.org/10.3390/app11020646
APA StyleAlam, S., Akhtar, M. S., Abdullah, Kim, E. -B., Shin, H. -S., & Ameen, S. (2021). An Effective D-π-A Type Donor Material Based on 4-Fluorobenzoylacetonitrile Core Unit for Bulk Heterojunction Organic Solar Cells. Applied Sciences, 11(2), 646. https://doi.org/10.3390/app11020646