“Perfect” Terahertz Vortex Beams Formed Using Diffractive Axicons and Prospects for Excitation of Vortex Surface Plasmon Polaritons
Abstract
:1. Introduction
2. Techniques for Bessel and Perfect Vortex Beam Formation
2.1. Bessel Beams
2.2. Methods of Forming Quasi-Bessel Beams
2.3. Transformation of Quasi-Bessel Beams into “Perfect Vortex Beams”
3. Analytical Expressions for Vortex Beams Formed with Binary Axicons
3.1. Optical Scheme and Coordinate Sysem
3.2. Vortex Beams behind Binary Axicon
3.3. Transformation of Bessel Beams Formed by Binary Axicons into Perfect Vortex Beams Using a Lens
3.4. Perfect Vortex Beams: Graphical Representation
4. Comparison of Wavefields of “Perfect Beams” and SPPs
4.1. Characteristics of SPPs on Axisymmetric Conductors
4.2. Wavefields of Perfect Beams Obtained with Binary Axicons and Overlap Integral
4.3. Comparison of Perfect Beams Generated with Different Axicons
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Padgett, M.J. Orbital angular momentum 25 years on [Invited]. Opt. Express 2017, 25, 11265–11274. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, B.A.; Serbo, V.G. Beams of photons with nonzero orbital angular momentum projection: New results. Physics-Uspekhi 2018, 61, 449–479. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, J.; Kim, H.; Cho, S.-W.; Lee, B. Controlling the state of surface plasmon vortex by changing the topological charge and polarization state. In Proceedings of the Plasmonics: Metallic Nanostructures and Their Optical Properties VIII, Bellingham, WA, USA, 10 September 2010; International Society for Optics and Photonics: Bellingham, WA, USA; Volume 7757, p. 77573G. [Google Scholar]
- Kim, H.; Park, J.; Cho, S.-W.; Lee, S.-Y.; Kang, M.; Lee, B. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 2010, 10, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-W.; Park, J.; Lee, S.-Y.; Kim, H.; Lee, B. Coupling of spin and angular momentum of light in plasmonic vortex. Opt. Express 2012, 20, 10083–10094. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Huang, K.; Liu, H.; Qin, F.; Mehmood, M.Q.; Xu, Z.; Hong, M.; Zhang, D.; Teng, J.; Danner, A.; et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale 2016, 8, 2227–2233. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, C.; Li, X. Dynamical manipulation of surface plasmon polaritons. Appl. Sci. 2019, 9, 3297. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, Q.; Xia, L.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Han, J.; Zhang, W. Terahertz surface plasmonic waves: A review. Adv. Photon. 2020, 2, 014001. [Google Scholar] [CrossRef]
- Knyazev, B.A.; Kameshkov, O.E.; Nikitin, A.K.; Pavelyev, V.S.; Choporova, Y.Y. Feasibility of generating surface plasmon po-laritons with a given orbital momentum on cylindrical waveguides using diffractive optical elements. Comput. Opt. 2019, 43, 992–1000. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 2015, 7, 66–106. [Google Scholar] [CrossRef] [Green Version]
- Dawson, P.; Puygranier, B.A.F.; Goudonnet, J.-P. Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total reflection. Phys. Rev. B 2001, 63, 205410. [Google Scholar] [CrossRef]
- Knyazev, B.A.; Choporova, Y.Y.; Gerasimov, V.V.; Kameshkov, O.E.; Nikitin, A.K.; Osintseva, N.D.; Pavelyev, V.S.; Vinokurov, N.A.; Agafonov, A.N.; Cherkassky, V.S.; et al. Experiments on Generation of vortex surface plasmon polaritons on plane and cylindrical conductors in mid-infrared and THz ranges. In Proceedings of the 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 8–13 November 2020; IEEE: Piscataway, NJ, USA (to be published). [Google Scholar]
- Maradudin, A.; Wallis, R.; Stegeman, G. The optics of surface and guided wave polaritons. Prog. Surf. Sci. 1990, 33, 171–257. [Google Scholar] [CrossRef]
- Ostrovsky, A.S.; Rickenstorff-Parrao, C.; Arrizón, V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt. Lett. 2013, 38, 534–536. [Google Scholar] [CrossRef]
- Vaity, P.; Rusch, L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 2015, 40, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Boston, MA, USA, 2005. [Google Scholar]
- Soifer, V.A. Computer Design of Diffractive Optics; Elsevier: Amsterdam, The Netherlands, 2013; p. 896. [Google Scholar]
- Wei, X.; Liu, C.; Niu, L.; Zhang, Z.; Wang, K.; Yang, Z.; Liu, J. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Appl. Opt. 2015, 54, 10641–10649. [Google Scholar] [CrossRef] [PubMed]
- Pavelyev, V.S.; Volodkin, B.; Tukmakov, K.N.; Knyazev, B.A.; Choporova, Y.Y. Transmissive diffractive microoptics for high-power THz laser radiation. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1989, p. 020025. [Google Scholar] [CrossRef]
- Knyazev, B.A.; Choporova, Y.Y.; Pavelyev, V.S.; Volodkin, B.O.; Mitkov, M.S. High-power terahertz non-diffractive bessel beams with angular orbital momentum: Generation and application. In Proceedings of the 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–2. [Google Scholar]
- Skidanov, V.E.; Ganchevskaya, S.V. Diffractive optical elements for the formation of combinations of vortex beams in the problem manipulation of microobjects. Comp. Opt. 2014, 38, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Z.-Y. Controlled mechanical motions of microparticles in optical tweezers. Micromachines 2018, 9, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrizón, V.; Sánchez-de-la-Llave, D.; Ruiz, U.; Méndez, G. Efficient generation of an arbitrary nondiffracting Bessel beam em-ploying its phase modulation. Opt. Lett. 2009, 34, 1456–1458. [Google Scholar] [CrossRef]
- Fedotowsky, A.; Lehovec, K. Optimal Filter Design for Annular Imaging. Appl. Opt. 1974, 13, 2919–2923. [Google Scholar] [CrossRef]
- Kononenko, T.V.; Knyazev, B.A.; Sovyk, D.N.; Pavelyev, V.S.; Komlenok, M.S.; Komandin, G.A.; Konov, V.I. Silicon kinoform cylindrical lens with low surface roughness for high-power terahertz radiation. Opt. Laser Technol. 2020, 123, 105953. [Google Scholar] [CrossRef]
- Choporova, Y.Y.; Knyazev, B.; Kulipanov, G.N.; Pavelyev, V.S.; Scheglov, M.A.; Vinokurov, N.A.; Volodkin, B.O.; Zhabin, V.N. High-power Bessel beams with orbital angular momentum in the terahertz range. Phys. Rev. A 2017, 96, 023846. [Google Scholar] [CrossRef]
- Pinnell, J.M.C.; Rodríguez-Fajardo, V.; Forbes, A. How perfect are perfect vortex beams? Opt. Lett. 2019, 44, 5614–5617. [Google Scholar] [CrossRef] [PubMed]
- Cherkassky, V.S.; Knyazev, B.A.; Kulipanov, G.N.; Matveenko, A.N.; Rudych, P.D.; Vinokurov, N.A. Study of polarizer char-acteristics with a high-power terahertz free electron laser. Int. J. Infrared Millim. Wave 2007, 28, 219–222. [Google Scholar] [CrossRef]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photon. 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Choporova, Y.Y.; Knyazev, B.A.; Osintseva, N.D.; Pavelyev, V.S.; Tukmakov, K.N. Two channel terahertz communication based on spatial mode multiplexing. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; p. 1. [Google Scholar]
- Saito, Y.; Kobayashi, M.; Hiraga, D.; Fujita, K.; Kawano, S.; Smith, N.; Inouye, Y.; Kawata, S. z-Polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light. J. Raman Spectrosc. 2008, 39, 1643–1648. [Google Scholar] [CrossRef]
- Sheppard, C. Diffraction optics. In Handbook of Biomedical Optics; Boas, D.A., Pitris, C., Ramanujam, N., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 31–52. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and theorems for the special functions of mathematical physics. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 52. Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed.; Springer: Berlin, Germany, 1966. [Google Scholar]
- Maier, S.A. Plasmonic: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]
- Gordon, R. Reflection of cylindrical surface waves. Opt. Express 2009, 17, 18621–18629. [Google Scholar] [CrossRef] [PubMed]
- Gerasimov, V.V.; Knyazev, B.A.; Lemzyakov, A.G.; Nikitin, A.K.; Zhizhin, G.N. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating. J. Opt. Soc. Am. B 2016, 33, 2196–2203. [Google Scholar] [CrossRef]
- Knyazev, B.; Gerasimov, V.V.; Nikitin, A.K.; Azarov, I.A.; Choporova, Y.Y. Propagation of terahertz surface plasmon polaritons around a convex metal–dielectric interface. J. Opt. Soc. Am. B 2019, 36, 1684–1689. [Google Scholar] [CrossRef]
- Chang, L.; Sun, X.; Shang, H.; Liu, P.; Hall, T.J.; Sun, D. Analysis of the fiber-waveguide coupling efficiency and the resulting polarization dependent loss. In Proceedings of the 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Copenhagen, Denmark, 24–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 155–156. [Google Scholar]
- Edelmann, A.; Helfert, S.; Jahns, J. Shaping of electromagnetic fields for THz plasmonics. In Complex Light and Optical Forces VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 8999, p. 899913. [Google Scholar]
- Knyazev, B.; Choporova, Y.Y.; Mitkov, M.S.; Pavelyev, V.S.; Volodkin, B.O. Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum. Phys. Rev. Lett. 2015, 115, 163901. [Google Scholar] [CrossRef]
- Kameshkov, O.E.; Knyazev, B.A. Simulating diffraction on a series of amplitude-phase masks for experiments at the Novosibirsk free electron laser. Bull. Russ. Acad. Sci. Phys. 2019, 83, 184–189. [Google Scholar] [CrossRef]
- Shevchenko, O.A.; Vinokurov, N.A.; Arbuzov, V.S.; Chernov, K.N.; Deichuly, O.I.; Dementyev, E.N.; Dovzhenko, B.A.; Getmanov, Y.V.; Gorbachev, Y.I.; Knyazev, B.A.; et al. The Novosibirsk free electron laser facility. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2299, p. 020001. [Google Scholar]
Axicon Type | Binary | Kinoform | Holographic | |||
---|---|---|---|---|---|---|
3 | 9 | 3 | 9 | 3 | 9 | |
, mm | 7.05 | 7.4 | 6.95 | 7.0 | 7.05 | 7.4 |
, mm | ~25 | ~25 | 0.82 | 1.05 | 0.41 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knyazev, B.; Cherkassky, V.; Kameshkov, O. “Perfect” Terahertz Vortex Beams Formed Using Diffractive Axicons and Prospects for Excitation of Vortex Surface Plasmon Polaritons. Appl. Sci. 2021, 11, 717. https://doi.org/10.3390/app11020717
Knyazev B, Cherkassky V, Kameshkov O. “Perfect” Terahertz Vortex Beams Formed Using Diffractive Axicons and Prospects for Excitation of Vortex Surface Plasmon Polaritons. Applied Sciences. 2021; 11(2):717. https://doi.org/10.3390/app11020717
Chicago/Turabian StyleKnyazev, Boris, Valery Cherkassky, and Oleg Kameshkov. 2021. "“Perfect” Terahertz Vortex Beams Formed Using Diffractive Axicons and Prospects for Excitation of Vortex Surface Plasmon Polaritons" Applied Sciences 11, no. 2: 717. https://doi.org/10.3390/app11020717
APA StyleKnyazev, B., Cherkassky, V., & Kameshkov, O. (2021). “Perfect” Terahertz Vortex Beams Formed Using Diffractive Axicons and Prospects for Excitation of Vortex Surface Plasmon Polaritons. Applied Sciences, 11(2), 717. https://doi.org/10.3390/app11020717