Numerical Investigation on the Influence of Surface Flow Direction on the Heat Transfer Characteristics in a Granite Single Fracture
Abstract
:1. Introduction
2. Numerical Simulations
2.1. Mathematical and Physical Models
2.2. Model Meshing and Mesh Independence Verification
2.3. Initial Conditions and Simulations
3. Model Verification
4. Data Processing
4.1. Heat Extraction Rate
4.2. Total Heat Transfer Coefficient
4.3. Local Heat Transfer Coefficient
5. Results and Discussion
5.1. Temperature Field Distribution
5.2. Heat Extraction Rate
5.3. Total Heat Transfer Coefficient
5.4. Local Heat Transfer Coefficient
5.5. Limitations of the Present Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fridleifsson, I.B. Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 2001, 5, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Mahbaz, S.B.; Dehghani-Sanij, A.R.; Dusseault, M.B.; Nathwani, J.S. Enhanced and integrated geothermal systems for sustainable development of Canada’s northern communities. Sustain. Energy Technol. Assess. 2020, 37, 100565. [Google Scholar] [CrossRef]
- Kinney, C.; Dehghani-Sanij, A.; Mahbaz, S.; Dusseault, M.B.; Nathwani, J.S.; Fraser, R.A. Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities. Energies 2019, 12, 4058. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, R.A.; Becker, N.M. Mining Earth’s Heat: Development of Hot Dry Rock Geothermal Reservoirs. Geotherm. Energy 1983, 11. [Google Scholar]
- Olasolo, P.; Juárez, M.C.; Morales, M.P.; D´Amico, S.; Liarte, I.A. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Kazemi, A.R.; Mahbaz, S.B.; Dehghani-Sanij, A.R.; Dusseault, M.B.; Fraser, R. Performance Evaluation of an Enhanced Geothermal System in the Western Canada Sedimentary Basin. Renew. Sustain. Energy Rev. 2019, 113, 109278. [Google Scholar] [CrossRef]
- Kolditz, O. Modeling flow and heat-transfer in fractured rocks - conceptual-model of a 3-d deterministic fracture network. Geothermics 1995, 24, 451–470. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, J.; Huang, W.; Luo, L. A three-dimensional transient model for EGS subsurface thermo-hydraulic process. Energy 2014, 72, 300–310. [Google Scholar] [CrossRef]
- Shaik, A.R.; Rahman, S.S.; Tran, N.H.; Tran, T. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system. Appl. Therm. Eng. 2011, 31, 1600–1606. [Google Scholar] [CrossRef]
- Patton, F. Multiple modes of shear failure in rock. Proceeding Congress Int. Soc. 1966, 1, 509–513. [Google Scholar]
- Mandelbrot, B.B.; Wheeler, J.A. The Fractal Geometry of Nature. Am. J. Phys. 1983, 51, 286–287. [Google Scholar] [CrossRef]
- Barton, N. Review of a new shear-strength criterion for rock joints. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
- Xie, H.; Pariseau, W.G. Fractal estimation of joint roughness coefficients. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1995, 32, 266A. [Google Scholar] [CrossRef] [Green Version]
- Ogino, F.; Yamamura, M.; Fukuda, T. Heat transfer from hot dry rock to waterflowingthrough a circular fracture. Geothermics 1999, 28, 21–44. [Google Scholar] [CrossRef]
- Tsang, Y.W. The Effect of Tortuosity on Fluid Flow Through a Single Fracture. Water Resour. Res. 1984, 20, 1209–1215. [Google Scholar] [CrossRef]
- Brown, S. Fluid-flow through rock joints - the effect of surface-roughness. J. Geophys. Res. Solid Earth Planets 1987, 92, 1337–1347. [Google Scholar] [CrossRef]
- Zhao, J.; Tso, C.P. Heat-transfer by water-flow in rock fractures and the application to hot dry rock geothermal systems. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 633–641. [Google Scholar] [CrossRef]
- He, Y.; Bai, B.; Li, X. Comparative Investigation on the Heat Transfer Characteristics of Gaseous CO2 and Gaseous Water Flowing Through a Single Granite Fracture. Int. J. Thermophys. 2017, 38, 170. [Google Scholar] [CrossRef]
- Neuville, A.; Toussaint, R.; Schmittbuhl, J. Hydrothermal coupling in a self-affine rough fracture. Phys. Rev. E 2010, 82, 036317. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhu, J.; Li, J.; Bai, B.; Zhang, G. Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure. Int. Commun. Heat Mass Transf. 2016, 75, 78–85. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, Y.; Guo, Q.; Tan, L.; Zhuang, Y.; Liu, M.; Zhang, C.; Xiang, W.; Rohn, J. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite. Sci. Rep. 2017, 7, 39882. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Rong, G.; Tan, J.; Cheng, L. Numerical investigation of fracture morphology effect on heat transfer characteristics of water flow through a single fracture. Geothermics 2019, 82, 51–62. [Google Scholar] [CrossRef]
- Shu, B.; Zhu, R.; Elsworth, D.; Dick, J.; Liu, S.; Tan, J.; Zhang, S. Effect of temperature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite. Appl. Energy 2020, 272, 115290. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Sun, Y.; Zhu, C.; Xiong, F.; Tang, Q. Numerical Simulation on Heat Transfer Characteristics of Water Flowing through the Fracture of High-Temperature Rock. Geofluids 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Andrade, J.S., Jr.; Henrique, E.A.A.; Almeida, M.P.; Costa, M.H.A.S. Heat transport through rough channels. Physica. Sect. A 2004, 339, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jiang, P.; Wang, Z.; Xu, R. Convective heat transfer of supercritical CO2 in a rock fracture for enhanced geothermal systems. Appl. Therm. Eng. 2017, 115, 923–936. [Google Scholar] [CrossRef]
- Fox, D.B.; Koch, D.L.; Tester, J.W. The effect of spatial aperture variations on the thermal performance of discretely fractured geothermal reservoirs. Geotherm. Energy 2015, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Zhao, Z.; Peng, H.; Pu, H. The role of fracture surface roughness in macroscopic fluid flow and heat transfer in fractured rocks. Int. J. Rock Mech. Min. Sci. 2016, 87, 29–38. [Google Scholar] [CrossRef]
- Li, Z.-W.; Feng, X.-T.; Zhang, Y.-J.; Xu, T.-F. Feasibility study of developing a geothermal heating system in naturally fractured formations: Reservoir hydraulic properties determination and heat production forecast. Geothermics 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Elmouttie, M.K.; Poropat, G.V. A Method to Estimate In Situ Block Size Distribution. Rock Mech. Rock Eng. 2011, 45, 401–407. [Google Scholar] [CrossRef]
- Leung, C.T.O.; Zimmerman, R.W. Estimating the Hydraulic Conductivity of Two-Dimensional Fracture Networks Using Network Geometric Properties. Transp. Porous Media 2012, 93, 777–797. [Google Scholar] [CrossRef]
- Bruel, D. Heat extraction modeling from forced fluid-flow through stimulated fractured rock masses - application to the rosemanowes hot dry rock reservoir. Geothermics 1995, 24, 361–374. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, G.; Wang, H. Heat extraction mechanism in a geothermal reservoir with rough-walled fracture networks. Int. J. Heat Mass Transf. 2018, 126, 1083–1093. [Google Scholar] [CrossRef]
- Li, J.; Sun, Z.; Zhang, Y.; Jiang, C.; Cherubini, C.; Scheuermann, A.; Torres, S.A.G.; Li, L. Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network. Energy 2019, 189. [Google Scholar] [CrossRef]
- Li, Z.-W.; Feng, X.-T.; Zhang, Y.-J.; Zhang, C.; Xu, T.-F.; Wang, Y.-S. Experimental research on the convection heat transfer characteristics of distilled water in manmade smooth and rough rock fractures. Energy 2017, 133, 206–218. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Yu, Z.; Ma, Y.; Zhang, C. Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems. Renew. Energy 2019, 135, 846–855. [Google Scholar] [CrossRef]
- He, Y.; Bai, B.; Cui, Y.; Lei, H.; Li, X. 3D Numerical Modeling of Water–Rock Coupling Heat Transfer Within a Single Fracture. Int. J. Thermophys. 2020, 41, 1–22. [Google Scholar] [CrossRef]
- Shu, B.; Zhu, R.; Tan, J.; Zhang, S.; Liang, M. Evolution of permeability in a single granite fracture at high temperature. Fuel 2019, 242, 12–22. [Google Scholar] [CrossRef]
- Bai, B.; He, Y.; Li, X. Numerical study on the heat transfer characteristics between supercritical carbon dioxide and granite fracture wall. Geothermics 2018, 75, 40–47. [Google Scholar] [CrossRef]
- Fluent Inc. FLUENT 6.3 User’s Guide; Fluent Inc.: Lebanon, NH, USA, 2007. [Google Scholar]
- Qu, Z.-Q.; Zhang, W.; Guo, T.-K. Influence of different fracture morphology on heat mining performance of enhanced geothermal systems based on COMSOL. Int. J. Hydrogen Energy 2017, 42, 18263–18278. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yu, Z.; Huang, Y.; Zhang, C. Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction. Int. J. Heat Mass Transf. 2018, 119, 139–147. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Z. Heat transfer in a 3D rough rock fracture with heterogeneous apertures. Int. J. Rock Mech. Min. Sci. 2020, 134. [Google Scholar] [CrossRef]
- Tan, J.; Rong, G.; He, R.; Yang, J.; Peng, J. Numerical investigation of heat transfer effect on flow behavior in a single fracture. Arab. J. Geosci. 2020, 13, 1–16. [Google Scholar] [CrossRef]
- He, Y.; Bai, B.; Hu, S.; Li, X. Effects of surface roughness on the heat transfer characteristics of water flow through a single granite fracture. Comput. Geotech. 2016, 80, 312–321. [Google Scholar] [CrossRef]
- Bai, B.; He, Y.; Hu, S.; Li, X. An Analytical Method for Determining the Convection Heat Transfer Coefficient Between Flowing Fluid and Rock Fracture Walls. Rock Mech. Rock Eng. 2017, 50, 1787–1799. [Google Scholar] [CrossRef]
Model Case (α =) | 0° | 30° | 60° | 90° | Maximum Deviation |
---|---|---|---|---|---|
Surface area (mm2) | 5588.95 | 5620.33 | 5658.53 | 5553.84 | 1.87% |
Inlet area (mm2) | 14.9883 | 14.9391 | 14.9405 | 14.9425 | 0.33% |
Volume (mm3) | 1496.28 | 1495.96 | 1494.91 | 1494.25 | 0.14% |
Vertical offset (mm) | 0.3 | 0.3 | 0.3 | 0.3 | \ |
Mesh Case | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Mesh Number | 691,257 | 1,366,554 | 2,628,825 | 3,120,142 |
Model Case (α =) | 0° | 30° | 60° | 90° |
---|---|---|---|---|
Mesh Number | 2,628,825 | 2,586,743 | 2,645,426 | 2,653,564 |
Model Case (α =) | Rock Temperature, T0 (°C) | Flow Rate, V0 (mL/min) |
---|---|---|
0° 30° 60° 90° | 70 90 | 10 20 30 40 |
T0 (°C) | V0 (mL/min) | Toutlet (°C) | |||
---|---|---|---|---|---|
α = 0° | α = 30° | α = 60° | α = 90° | ||
70°C | 10 | 54.08 | 53.93 | 53.87 | 54.19 |
20 | 36.47 | 36.36 | 36.23 | 36.51 | |
30 | 30.92 | 30.87 | 30.80 | 30.99 | |
40 | 28.67 | 28.65 | 28.59 | 28.73 | |
90°C | 10 | 68.45 | 68.38 | 68.23 | 68.58 |
20 | 42.03 | 41.96 | 41.87 | 42.18 | |
30 | 33.75 | 33.70 | 33.62 | 33.84 | |
40 | 30.44 | 30.34 | 30.27 | 30.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Zhang, Y.; Hu, Z.; Huang, Y. Numerical Investigation on the Influence of Surface Flow Direction on the Heat Transfer Characteristics in a Granite Single Fracture. Appl. Sci. 2021, 11, 751. https://doi.org/10.3390/app11020751
Gao X, Zhang Y, Hu Z, Huang Y. Numerical Investigation on the Influence of Surface Flow Direction on the Heat Transfer Characteristics in a Granite Single Fracture. Applied Sciences. 2021; 11(2):751. https://doi.org/10.3390/app11020751
Chicago/Turabian StyleGao, Xuefeng, Yanjun Zhang, Zhongjun Hu, and Yibin Huang. 2021. "Numerical Investigation on the Influence of Surface Flow Direction on the Heat Transfer Characteristics in a Granite Single Fracture" Applied Sciences 11, no. 2: 751. https://doi.org/10.3390/app11020751
APA StyleGao, X., Zhang, Y., Hu, Z., & Huang, Y. (2021). Numerical Investigation on the Influence of Surface Flow Direction on the Heat Transfer Characteristics in a Granite Single Fracture. Applied Sciences, 11(2), 751. https://doi.org/10.3390/app11020751