Scenario Optimisation and Sensitivity Analysis for Safe Automated Driving Using Gaussian Processes
Abstract
:1. Introduction
Contributions
2. Related Work
2.1. Scenario-Based Validation of AVs
2.2. Supervised Machine Learning Algorithms
3. Gaussian Processes
3.1. Formal Description of Gaussian Processes
3.2. Learning the Hyperparameters
3.3. Gaussian Process Classification
4. Sensitivity Analysis
4.1. Variance-Based Methods
4.2. Emulators-Based Sensitivity Analysis
Inference for Variance-Based Sensitivity Analysis Measures
5. Method for Scenario Optimisation and Data Acquisition through Simulation
5.1. Initial Scenario Data Set and Data Generation via Simulation
5.2. Scenario Scoring
5.3. Methodology for Scenario Optimisation
Algorithm 1: Scenario Optimisation |
6. Results
6.1. Description of the Pedestrian Step-Out Scenario
- Speed of ego vehicle ();
- Speed of pedestrian stepping onto street ();
- Distance between pedestrian and ego vehicle at the time the pedestrian steps out (d);
- Sensor Range (blue cone) ();
- Horizontal field-of-view of sensor (opening angle of blue cone) (H).
6.2. Optimised Critical Scenarios for the Pedestrian Step-Out Scenario
6.3. Probabilistic Sensitivity Analysis of Scenario Data Sets
6.3.1. Sensitivity Analysis of the Pedestrian Step-Out Scenario
6.3.2. Scenario Description of the Traffic Jam Scenario
- Speed of the ego vehicle ()
- Speed of the traffic jam ()
- Aperture angle of the radar sensor ()
6.3.3. Sensitivity Analysis of the Traffic Jam Scenario
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A. Function Decomposition for Main Effects and Interactions
References
- ADAC. Zahlen, Fakten, Wissen. Aktuelles aus dem Verkehr; Technical Report; ADAC e.V.: München, Germany, 2016. [Google Scholar]
- Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.; Keller, C.G.; et al. Making Bertha Drive—An Autonomous Journey on a Historic Route. IEEE Intell. Transp. Syst. Mag. 2014, 6, 8–20. [Google Scholar] [CrossRef]
- SAE. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles; Technical Report; SAE: Warrendale, PA, USA, 2018. [Google Scholar]
- Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 2016, 94, 182–193. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, H.; Zhao, D.; Tseng, H.E. Accelerated Evaluation of Autonomous Vehicles in the Lane Change Scenario Based on Subset Simulation Technique. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3935–3940. [Google Scholar] [CrossRef]
- Batsch, F.; Kanarachos, S.; Cheah, M.; Ponticelli, R.; Blundell, M. A taxonomy of validation strategies to ensure the safe operation of highly automated vehicles. J. Intell. Transp. Syst. 2020, 1–20. [Google Scholar] [CrossRef]
- Menzel, T.; Bagschik, G.; Maurer, M. Scenarios for Development, Test and Validation of Automated Vehicles. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1821–1827. [Google Scholar] [CrossRef] [Green Version]
- Batsch, F.; Daneshkhah, A.; Cheah, M.; Kanarachos, S.; Baxendale, A. Performance Boundary Identification for the Evaluation of Automated Vehicles using Gaussian Process Classification. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 419–424. [Google Scholar] [CrossRef] [Green Version]
- Ulbrich, S.; Menzel, T.; Reschka, A.; Schuldt, F.; Maurer, M. Defining and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, Spain, 15–18 September 2015; pp. 982–988. [Google Scholar] [CrossRef]
- Zlocki, A.; Eckstein, L.; Fahrenkrog, F. Evaluation and Sign-Off Methodology for Automated Vehicle Systems Based on Relevant Driving Situations. Transp. Res. Rec. J. Transp. Res. Board 2015, 2489, 123–129. [Google Scholar] [CrossRef]
- Khastgir, S.; Dhadyalla, G.; Birrell, S.; Redmond, S.; Addinall, R.; Jennings, P. Test Scenario Generation for Driving Simulators Using Constrained Randomization Technique. SAE Tech. Pap. 2017, 1–7. [Google Scholar] [CrossRef]
- Althoff, M.; Mergel, A. Comparison of Markov Chain Abstraction and Monte Carlo Simulation for the Safety Assessment of Autonomous Cars. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1237–1247. [Google Scholar] [CrossRef] [Green Version]
- Gietelink, O.; De Schutter, B.; Verhaegen, M. Probabilistic validation of advanced driver assistance systems. IFAC Proc. Vol. 2005, 38, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Huang, X.; Peng, H.; Lam, H.; LeBlanc, D.J. Accelerated Evaluation of Automated Vehicles in Car-Following Maneuvers. IEEE Trans. Intell. Transp. Syst. 2018, 19, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Peng, H. From the Lab to the Street: Solving the Challenge of Accelerating Automated Vehicle Testing. arXiv 2017, arXiv:1707.04792. [Google Scholar]
- Ngo, A.; Bauer, M.P.; Resch, M. A Sensitivity Analysis Approach for Evaluating a Radar Simulation for Virtual Testing of Autonomous Driving Functions. In Proceedings of the 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Singapore, 17–19 July 2020; pp. 122–128. [Google Scholar]
- Nolte, M.; Schubert, R.; Reisch, C.; Maurer, M. Sensitivity Analysis for Vehicle Dynamics Models—An Approach to Model Quality Assessment for Automated Vehicles. arXiv 2020, arXiv:2005.03872. [Google Scholar]
- Fraikin, N.; Funk, K.; Frey, M.; Gauterin, F. Efficient Simulation Based Calibration of Automated Driving Functions Based on Sensitivity Based Optimization. IEEE Open J. Intell. Transp. Syst. 2020, 1, 63–79. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Al-Qizwini, M.; Barjasteh, I.; Al-Qassab, H.; Radha, H. Deep learning algorithm for autonomous driving using GoogLeNet. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 89–96. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Esmaeilbeigi, M.; Daneshkhah, A.; Chatrabgoun, O. Some Computational Considerations for Kernel-Based Support Vector Machine. In Digital Twin Technologies and Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 177–189. [Google Scholar]
- Remmen, F.; Cara, I.; de Gelder, E.; Willemsen, D. Cut-in Scenario Prediction for Automated Vehicles. In Proceedings of the 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive computation and machine learning; MIT Press: Cambridge, MA, USA, 2006; p. 266. [Google Scholar]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Lee, D.; Essa, I. Gaussian process regression flow for analysis of motion trajectories. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.; Sommerlade, E.; Reid, I. Modelling pedestrian trajectory patterns with Gaussian processes. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009; pp. 1229–1234. [Google Scholar] [CrossRef] [Green Version]
- Tran, Q.; Firl, J. Modelling of traffic situations at urban intersections with probabilistic non-parametric regression. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 334–339. [Google Scholar] [CrossRef]
- Armand, A.; Filliat, D.; Ibanez-Guzman, J. Modelling stop intersection approaches using Gaussian processes. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 1650–1655. [Google Scholar] [CrossRef] [Green Version]
- Mullins, G.E.; Stankiewicz, P.G.; Hawthorne, R.C.; Gupta, S.K. Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles. J. Syst. Softw. 2018, 137, 197–215. [Google Scholar] [CrossRef]
- Huang, Z.; Lam, H.; Zhao, D. Towards affordable on-track testing for autonomous vehicle—A Kriging-based statistical approach. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- IPG Carmaker. 2019. Available online: https://ipg-automotive.com/ (accessed on 14 January 2021).
- Sobol, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Saltelli, A.; Tarantola, S.; Chan, K.S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 1999, 41, 39–56. [Google Scholar] [CrossRef]
- Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93, 964–979. [Google Scholar] [CrossRef]
- Oakley, J.E.; O’Hagan, A. Probabilistic sensitivity analysis of complex models: A Bayesian approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2004, 66, 751–769. [Google Scholar] [CrossRef] [Green Version]
- Daneshkhah, A.; Bedford, T. Probabilistic sensitivity analysis of system availability using Gaussian processes. Reliab. Eng. Syst. Saf. 2013, 112, 82–93. [Google Scholar] [CrossRef]
- Homma, T.; Saltelli, A. Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 1996, 52, 1–17. [Google Scholar] [CrossRef]
- Daneshkhah, A.; Hosseinian-Far, A.; Chatrabgoun, O. Sustainable maintenance strategy under uncertainty in the lifetime distribution of deteriorating assets. In Strategic Engineering for Cloud Computing and Big Data Analytics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 29–50. [Google Scholar]
- Bedford, T.; Wilson, K.J.; Daneshkhah, A. Assessing parameter uncertainty on coupled models using minimum information methods. Reliab. Eng. Syst. Saf. 2014, 125, 3–12. [Google Scholar] [CrossRef] [Green Version]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Keramat, M.; Kielbasa, R. Latin hypercube sampling Monte Carlo estimation of average quality index for integrated circuits. Analog Integr. Circuits Signal Process. 1997, 14, 131–142. [Google Scholar] [CrossRef]
- van der Horst, R.; Hogema, J. Time-to-Collision and Collision Avoidance Systems. In Proceedings of the 6th ICTCT Workshop; ICTCT: Salzburg, Austria, 1993; pp. 1–12. [Google Scholar]
- Bryan, B.; Nichol, R.C.; Genovese, C.R.; Schneider, J.; Miller, C.J.; Wasserman, L. Active Learning For Identifying Function Threshold Boundaries. In Advances in Neural Information Processing Systems 18; Weiss, Y., Schölkopf, B., Platt, J.C., Eds.; MIT Press: Cambridge, MA, USA, 2006; pp. 163–170. [Google Scholar]
- Daneshkhah, A.; Bedford, T. Sensitivity analysis of a reliability system using gaussian processes. In Advances in Mathematical Modeling for Reliability; IOS Press: Amsterdam, The Netherlands, 2008; p. 46. [Google Scholar]
Simulation Parameters | Lower Limit | Upper Limit |
---|---|---|
[km/h] | 10 | 50 |
[km/h] | 2 | 15 |
d [m] | 5 | 40 |
[m] | 10 | 100 |
H [deg] | 45 | 150 |
Parameters | Variance (%) | ||
---|---|---|---|
Speed of ego vehicle () | 27.98 | 0.4221 | 0.4843 |
Speed of Pedestrian stepping onto street () | 17.47 | 0.2468 | 0.2852 |
Distance between pedestrian and ego vehicle (d) | 0 | 0.265 | 0.3215 |
Sensor Range () | 0 | 0.0124 | 0.0196 |
Horizontal field-of-view of sensor (H) | 0 | 0.0128 | 0.0199 |
() | 54.53 | ||
Total Variance (%) | 99.99 | ||
Estimated mean output | 0.83 ± 9.0905 × 10 | ||
Estimated variance output | 0.028 |
Simulation Parameters | Lower Limit | Upper Limit |
---|---|---|
[km/h] | 40 | 70 |
[km/h] | 5 | 20 |
[deg] | 10 | 25 |
Parameters | Variance (%) | ||
---|---|---|---|
Speed of ego vehicle () | 28.88 | 0.3122 | 0.6160 |
Speed of traffic jam () | 16.64 | 0.1289 | 0.4088 |
Sensor Aperture Angle () | 31.18 | 0.2427 | 0.5438 |
(, ) | 3.72 | ||
(, ) | 6.21 | ||
(, ) | 3.87 | ||
Total Variance (%) | 90.49 | ||
Estimated mean output | 0.537633 ± 8.1986 × 10 | ||
Estimated variance output | 0.136 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batsch, F.; Daneshkhah, A.; Palade, V.; Cheah, M. Scenario Optimisation and Sensitivity Analysis for Safe Automated Driving Using Gaussian Processes. Appl. Sci. 2021, 11, 775. https://doi.org/10.3390/app11020775
Batsch F, Daneshkhah A, Palade V, Cheah M. Scenario Optimisation and Sensitivity Analysis for Safe Automated Driving Using Gaussian Processes. Applied Sciences. 2021; 11(2):775. https://doi.org/10.3390/app11020775
Chicago/Turabian StyleBatsch, Felix, Alireza Daneshkhah, Vasile Palade, and Madeline Cheah. 2021. "Scenario Optimisation and Sensitivity Analysis for Safe Automated Driving Using Gaussian Processes" Applied Sciences 11, no. 2: 775. https://doi.org/10.3390/app11020775
APA StyleBatsch, F., Daneshkhah, A., Palade, V., & Cheah, M. (2021). Scenario Optimisation and Sensitivity Analysis for Safe Automated Driving Using Gaussian Processes. Applied Sciences, 11(2), 775. https://doi.org/10.3390/app11020775