Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of NPs
2.3. Morphological Analysis of NPs Using Scanning Electron Microscopy (SEM)
2.4. Determination of Peroxidase-Like Activity of NPs in Solution
2.5. Sensor Evaluation
2.5.1. Apparatus, Measurements, and Statistical Analysis
2.5.2. Immobilization of Metallic NPs onto Electrodes, Testing Their Electro- and PO-Like Activity
3. Results and Discussion
3.1. Obtaining and Characterizing the Best Peroxidase-Like Nanozymes
3.2. Development and Characterization of the NZs-Modified Electrodes
3.3. Characterization of the Most Effective Cu/CeS-Modified Electrode
3.4. Application of Cu/CeS as a PO-Mimetic in Amperometric Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2,4-DCP | 2,4-Dichlorophenol |
ABTS | 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) |
CV | Cyclic voltammetry |
DBD | Diamond boron-doped |
gCuHCF | Hexacyanoferrate of coppers obtained via enzyme |
GCE | Glassy carbon electrode |
GE | Graphite electrode |
HNCs | Hollow nanocubes |
Imax | Maximal current response on tested analyte at substrate saturation |
KMapp | Apparent Michaelis–Menten constant |
LOD | Limit of detection |
LR | Linear range |
MOFs | Metal–Organic Frameworks |
NPs | Nanoparticles |
NZ | Nanozyme |
Me/CeS | Nanozyme obtained in the presence of Na2S in reaction mixture; where Me–Fe, Cu or Ag. |
OPD | o-Phenylenediamine |
PO | Natural horseradish peroxidase |
SAT | Standard addition test |
SEM-XRM | Scanning electron microscopy coupled with X-ray microanalysis |
TMB | 3,5,3′,5′-Tetramethylbenzidine |
References
- Dunford, H.B. Heme Peroxidases (University of Alberta); Wiley-VCH, John Wiley and Sons: New York, NY, USA, 1999; 507p, ISBN 0-471-24244-6. [Google Scholar]
- Veitch, N.C.; Smith, A.T. Horseradish peroxidase. Comput. Chem. 2000, 51, 107–162. [Google Scholar] [CrossRef]
- Plieth, C. Peroxide-Induced Liberation of Iron from Heme Switches Catalysis during Luminol Reaction and Causes Loss of Light and Heterodyning of Luminescence Kinetics. ACS Omega 2019, 4, 3268–3279. [Google Scholar] [CrossRef] [PubMed]
- Tatsuma, T.; Watanabe, T. Peroxidase model electrodes: Heme peptide modified electrodes as reagentless sensors for hydrogen peroxide. Anal. Chem. 1991, 63, 1580–1585. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Wollenberger, U. Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. Sensors 2020, 20, 3692. [Google Scholar] [CrossRef]
- Attar, F.; Shahpar, M.G.; Rasti, B.; Sharifi, M.; Saboury, A.A.; Rezayat, S.M.; Falahati, M. Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 2019, 278, 130–144. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Gallay, P.; Eguílaz, M.; Rivas, G.A. Designing electrochemical interfaces based on nanohybrids of avidin functionalized-carbon nanotubes and ruthenium nanoparticles as peroxidase-like nanozyme with supramolecular recognition properties for site-specific anchoring of biotinylated residues. Biosens. Bioelectron. 2020, 148, 111764. [Google Scholar] [CrossRef]
- Sun, L.; Ding, Y.; Jiang, Y.; Liu, Q. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators B Chem. 2017, 239, 848–856. [Google Scholar] [CrossRef]
- Cui, F.; Deng, Q.; Sun, L. Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv. 2015, 5, 98215–98221. [Google Scholar] [CrossRef]
- Komkova, M.A.; Pasquarelli, A.; Andreev, E.A.; Galushin, A.A.; Karyakin, A.A. Prussian Blue modified boron-doped dia-mond interfaces for advanced H2O2 electrochemical sensors. Electrochim. Acta 2020, 339, 135924. [Google Scholar] [CrossRef]
- Stasyuk, N.; Smutok, O.; Demkiv, O.M.; Prokopiv, T.; Gayda, G.Z.; Nisnevitch, M.; Gonchar, M.V. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. Sensors 2020, 20, 4509. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Hu, Y.; Wei, H. Nanozymes: Preparation and Characterization. In Nanotechnology for Electronics, Photonics, and Renewable Energy; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 79–101. [Google Scholar]
- Yue, Y.; Wei, H.; Guo, J.; Yang, Y. Ceria-based peroxidase-mimicking nanozyme with enhanced activity: A coordination chemistry strategy. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125715. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Yan, X.; Fan, K. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 2020, 41, 81–119. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, X. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chem. Rev. 2019, 119, 1806–1854. [Google Scholar] [CrossRef]
- Shen, J.; Shafiq, M.; Ma, M.; Chen, H. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology. Nanomaterials 2020, 10, 1177. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, H.; Zhao, S. Fabrication of chemiluminescence resonance energy transfer platform based on nanomaterial and its application in optical sensing, biological imaging and photodynamic therapy. TrAC Trends Anal. Chem. 2020, 122, 115747. [Google Scholar] [CrossRef]
- Rauf, S.; Ali, N.; Tayyab, Z.; Shah, M.A.K.Y.; Yang, C.P.; Hu, J.; Kong, W.; Huang, Q.; Hayat, A.; Muhammad, N. Ionic liquid coated zerovalent manganese nanoparticles with stabilized and enhanced peroxidase-like catalytic activity for colorimetric detection of hydrogen peroxide. Mater. Res. Express 2020, 7, 035018. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Wang, Z.; Liu, J.; Li, T.; Wang, B.; Yang, Z. A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv. 2015, 5, 10632–10640. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, J.; Zhou, Y.; Pan, X.; Chen, Z.; Ye, Z.; Pan, X. Controlled synthesis of spinel ZnFe2O4 decorated ZnO heterostructures as peroxidase mimetics for enhanced colorimetric biosensing. Chem. Commun. 2013, 49, 7656–7658. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yan, Y.; Zhang, X.; Mao, Y.; Ren, X.; Hu, C.; He, W.; Yin, J.-J. Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe2+ and protection of Monascus pigments. Nanoscale 2020, 12, 3068–3075. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Kong, L.; Wang, X.; He, J.; Bu, X.-H. Engineering Bimetal Synergistic Electrocatalysts Based on Metal–Organic Frameworks for Efficient Oxygen Evolution. Small 2019, 15, e1903410. [Google Scholar] [CrossRef] [PubMed]
- Cao-Milán, R.; He, L.D.; Shorkey, S.; Tonga, G.Y.; Wang, L.-S.; Zhang, X.; Uddin, I.; Das, R.; Sulak, M.; Rotello, V.M. Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization. Mol. Syst. Des. Eng. 2017, 2, 624–628. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front 2016, 3, 41–60. [Google Scholar] [CrossRef]
- Chen, J.; Wei, X.; Tang, H.; Munyemana, J.C.; Guan, M.; Zhang, S.; Qiu, H. Deep eutectic solvents-assisted synthesis of ZnCo2O4 nanosheets as peroxidase-like nanozyme and its application in colorimetric logic gate. Talanta 2021, 222, 121680. [Google Scholar] [CrossRef]
- Rane, A.V.; Kanny, K.; Abitha, V.K.; Sabu, T. Chapter 5. Methods for Synthesis of Nanoparticles and Fabrication of Nano-composites. In Synthesis of Inorganic Nanomaterials Advances and Key Technologies Micro and Nano Technologies, 1st ed.; Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N., Sabu, T., Eds.; Woodhead Publishing Company: Sawston, UK, 2018; pp. 121–139. ISBN 9780081019757. [Google Scholar]
- Suriati, G.; Mariatti, M.; Azizan, A. Synthesis of silver nanoparticles bu chemical reduction method: Effect of reducing agent and surfactant concentration. Int. J. Automot. Mech. Eng. 2014, 10, 1920–1927. [Google Scholar] [CrossRef]
- Chen, H.-I.; Chang, H.-Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram. Int. 2005, 31, 795–802. [Google Scholar] [CrossRef]
- Vokhmyanina, D.V.; Andreeva, K.D.; Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. ‘Artificial peroxidase’ nanozyme–enzyme based lactate biosensor. Talanta 2020, 208, 120393. [Google Scholar] [CrossRef]
- Neampet, S.; Ruecha, N.; Qin, J.; Wonsawat, W.; Chailapakul, O.; Rodthongkum, N. A nanocomposite prepared from platinum particles, polyaniline and a Ti3C2 MXene for amperometric sensing of hydrogen peroxide and lactate. Microchim. Acta 2019, 186, 752. [Google Scholar] [CrossRef]
- Matos-Peralta, Y.; Antuch, M. Review—Prussian Blue and Its Analogs as Appealing Materials for Electrochemical Sensing and Biosensing. J. Electrochem. Soc. 2019, 167, 037510. [Google Scholar] [CrossRef]
- Meng, X.; Gao, L.; Fan, K.; Yan, X. Nanozyme-Based Tumor Theranostics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 425–457. [Google Scholar]
- Chen, W.; Gao, G.; Jin, Y.; Deng, C. A facile biosensor for Aβ40O based on fluorescence quenching of prussian blue nanoparticles. Talanta 2020, 216, 120930. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, Z.; Guo, C.; Hu, B.; Wang, M.; Du, M.; Du, M. Bifunctional bioplatform based on NiCo Prussian blue analogue: Label-free impedimetric aptasensor for the early detection of carcino-embryonic antigen and living cancer cells. Sens. Actuators B Chem. 2019, 298, 126852. [Google Scholar] [CrossRef]
- Tabrizi, M.A.; Shamsipur, M.; Saber, R.; Sarkar, S.; Zolfaghari, N. An ultrasensitive sandwich-type electrochemical immunosensor for the determination of SKBR-3 breast cancer cell using rGO-TPA/FeHCFnano labeled Anti-HCT as a signal tag. Sens. Actuators B Chem. 2017, 243, 823–830. [Google Scholar] [CrossRef]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef]
- Wang, P.; Wang, T.; Hong, J.; Yan, X.; Liang, M. Nanozymes: A New Disease Imaging Strategy. Front. Bioeng. Biotechnol. 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Stasyuk, N.; Gayda, G.Z.; Zakalskiy, A.E.; Zakalska, O.; Serkiz, R.; Gonchar, M. Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chem. 2019, 285, 213–220. [Google Scholar] [CrossRef]
- Gayda, G.Z.; Demkiv, O.M.; Gurianov, Y.; Serkiz, R.Y.; Gonchar, M.V.; Nisnevitch, M. “Green” Nanozymes: Synthesis, Characterization, and Application in Amperometric (Bio)sensors. Multidiscip. Digit. Publ. Inst. Proc. 2020, 60, 58. [Google Scholar] [CrossRef]
- Gayda, G.Z.; Demkiv, O.M.; Stasyuk, N.Y.; Serkiz, R.Y.; Lootsik, M.D.; Errachid, A.; Gonchar, M.V.; Nisnevitch, M. Metallic Nanoparticles Obtained via “Green” Synthesis as a Platform for Biosensor Construction. Appl. Sci. 2019, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Stasyuk, N.; Gayda, G.Z.; Klepach, H.; Gonchar, M.V. Nanoparticles of Noble Metals as Effective Platforms for the Fabrication of Amperometric Biosensors on Hydrogen Peroxide. Sens. Lett. 2016, 14, 1169–1177. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.; Shang, Y.; Zhang, P.; Liu, J.; Zheng, J. Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim. Acta 2018, 185, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huo, D.; Bao, J.; Yang, M.; Chen, M.; Hou, J.; Fa, H.; Hou, C. Biosensor based on 3D graphene-supported Fe3O4 quantum dots as biomimetic enzyme for in situ detection of H2O2 released from living cells. Sens. Actuators B Chem. 2017, 244, 1037–1044. [Google Scholar] [CrossRef]
- Niu, Q.; Bao, C.; Cao, X.; Liu, C.; Wang, H.; Lu, W. Ni–Fe PBA hollow nanocubes as efficient electrode materials for highly sensitive detection of guanine and hydrogen peroxide in human whole saliva. Biosens. Bioelectron. 2019, 141, 111445. [Google Scholar] [CrossRef] [PubMed]
- Keihan, A.H.; Karimi, R.R.; Sajjadi, S. Wide dynamic range and ultrasensitive detection of hydrogen peroxide based on beneficial role of gold nanoparticles on the electrochemical properties of prussian blue. J. Electroanal. Chem. 2020, 862, 114001. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, Y.; Cheng, T.; Lai, W.-Y.; Huang, W. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nanoscale 2015, 7, 16012–16019. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Du, X.; Chen, Y.; Dong, W.; Han, B.; Chen, Q. Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing. Talanta 2016, 159, 280–286. [Google Scholar] [CrossRef]
- Sitnikova, N.A.; Borisova, A.V.; Komkova, M.A.; Karyakin, A.A. Superstable Advanced Hydrogen Peroxide Transducer Based on Transition Metal Hexacyanoferrates. Anal. Chem. 2011, 83, 2359–2363. [Google Scholar] [CrossRef]
- Pandey, P.C.; Panday, D.; Pandey, A.K. Polyethylenimine mediated synthesis of copper-iron and nickel-iron hexacyanoferrate nanoparticles and their electroanalytical applications. J. Electroanal. Chem. 2016, 780, 90–102. [Google Scholar] [CrossRef]
- Karpova, E.V.; Karyakina, E.E.; Karyakin, A.A. Communication—Accessing Stability of Oxidase-Based Biosensors via Stabilizing the Advanced H2O2Transducer. J. Electrochem. Soc. 2017, 164, B3056–B3058. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, S.; Xu, H.; Zhao, Q.; Zhang, Z.; Yao, Y. Preparation of poly(N-acetylaniline)–Prussian blue hybrid composite film and its application to hydrogen peroxide sensing. Anal. Methods 2014, 6, 8003–8010. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Karyakina, E.E.; Gorton, L. Amperometric Biosensor for Glutamate Using Prussian Blue-Based “Artificial Peroxidase” as a Transducer for Hydrogen Peroxide. Anal. Chem. 2000, 72, 1720–1723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Duan, Y.; Shao, Z.; Chen, C.; Yang, M.; Lu, G.; Xu, W.; Liao, X. Amperometric hydrogen peroxide sensor using a glassy carbon electrode modified with a nanocomposite prepared from ferumoxytol and reduced graphene oxide decorated with platinum nanoparticles. Microchim. Acta 2019, 186, 386. [Google Scholar] [CrossRef] [PubMed]
- Karyakin, A.A.; Gitelmacher, O.V.; Karyakina, E.E. Prussian Blue-Based First-Generation Biosensor. A Sensitive Am-perometric Electrode for Glucose. Anal. Chem. 1995, 67, 2419–2423. [Google Scholar] [CrossRef]
No | NPs | Reaction Mixture and Conditions |
---|---|---|
1 | Fe/Ce S | 2 mL 50 mM FeCl3 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM Na2S; stirring for 1 min; incubation without stirring for 24 h at 20 °C. |
2 | Cu/Ce S | 1 mL 0.01 mM Ce(HCO3)4 + 1 mL 10 mM sodium borohydride, vigorous stirring for 5 min followed by adding 2 mL 20 mM CuSO4; incubation without stirring for 1 h at 20 °C + 0.1 mL 10 mM Na2S; stirring for 5 min at 20 °C. |
3 | Fe/Mn | 2 mL 50 mM FeCl3 + 2 mL 50 mM MnSO4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM Na2S; stirring for 1 min; incubation without stirring for 24 h at 20 °C. |
4 | Ag/Ce S | 2 mL 50 mM AgNO3 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min followed by adding 0.1 mL 10 mM Na2S; stirring for 1 min at 20 °C. incubation without stirring for 24 h at 20 °C. |
5 | Pt/Cu | 0.2 mL 48 mM H2PtCl6 + 0.16 mL 100 mM ascorbic acid, vigorous stirring for 5 min followed by adding 1 mL 100 mM CuSO4 and 0.2 mL 100 mM ascorbic acid; incubation without stirring for 24 h at 20 °C. |
6 | Fe/Ce | 2 mL 50 mM FeCl3 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM NH4OH; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
7 | Zn/Ce | 2 mL 50 mM ZnSO4 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM NH4OH; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
8 | Cu/Ce | 2 mL 50 mM CuSO4 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM NH4OH; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
9 | Pd/Ce | 1 mL 0.01 mM PdCl3 + 1 mL 100 mM NaBH4, vigorous stirring for 5 min followed by adding 4 mL 0.01 mM Ce(HCO3)4 and 0.5 mL 100 mM NaBH4. |
10 | Pd/Cu | 1 mL 0.01 mM PdCl3 + 1 mL 10 mM NaBH4, vigorous stirring for 3 min followed by adding 2 mL 0.01 mM Ce(HCO3)4 and 0.5 mL 100 mM NaBH4; stirring for 1 min; incubation without stirring for 24 h at 20 °C. |
11 | Ag/Ce | 2 mL 50 mM AgNO3 + 2 mL 15 mM Ce(HCO3)4, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
12 | Au/Cu | 2 mL 50 mM CuSO4 + 2 mL 15 mM Ce(HCO3)4, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
13 | Au | 0.145 mL 58.5 mM HAuCl4 + 10 mL 10 mM CTAB, vigorous stirring; + 0.18 mL 100 mM NaBH4; stirring for 2 h at 20 °C. |
14 | Ag/Cu | 2 mL 50 mM CuSO4 + 2 mL AgNO3, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; incubation without stirring for 24 h at 20 °C. |
15 | Pt/Ag | 0.2 mL 48 mM H2PtCl6 + 2 mL AgNO3, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
16 | Ag/Zn | 2 mL 50 mM AgNO3 + 2 mL 50 mM ZnSO4, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
No. | Nanozyme | Synthesis Method | Specific Activity, Units /mg |
---|---|---|---|
1 | Fe/Ce S | Na2S | 1.86 ± 0.16 |
2 | Cu/Ce S | NaBH4/Na2S | 1.27 ± 0.11 |
3 | Fe/Mn | Na2S | 0.12 ± 0.01 |
4 | Ag/Ce S | Na2S | 0.05 ± 0.004 |
5 | Pt/Cu | Ascorbic acid | 1.84 ± 0.14 |
6 | Fe/Ce | NH4OH | 3.06 ± 0.26 |
7 | Zn/Ce | NH4OH | 2.28 ± 0.21 |
8 | Cu/Ce | NH4OH | 0.90 ± 0.007 |
9 | Pd/Ce | NaBH4 | 0.72 ± 0.06 |
10 | Pd/Cu | NaBH4 | 0.4 ± 0.03 |
11 | Ag/Ce | NaBH4 | 2.50 ± 0.22 |
12 | Au/Cu | NaBH4 | 4.22 ± 0.34 |
13 | Au | NaBH4 | 2.62 ± 0.19 |
14 | Ag/Cu | NaBH4 | 0.24 ± 0.02 |
15 | Pt/Ag | NaBH4 | 1.40 ± 0.11 |
16 | Ag/Zn | NaBH4 | 0.79 ± 0.06 |
Sensitive Film | No. in Table 2 | Sensitivity, A M−1 m−2 | LOD, µM | Linear Range, µM | KMapp, mM | Imax, μA |
---|---|---|---|---|---|---|
PO | 352 | 400 | 4.9 ± 1.1 | 5.0 ± 0.2 | ||
Cu/Ce S | 2 | 1890 | 0.42 ± 0.006 | 1.5–20,000 | 43.3 ± 14.5 | 786.4 ± 167.7 |
Fe/Ce | 6 | 1372 | 2.90 ± 0.010 | 50–1000 | 14.4 ± 1.3 | 104.5 ± 3.3 |
Au/Cu | 12 | 793 | 4.88 ± 0.010 | 50–15,000 | 28.0 ± 3.2 | 213.3 ± 13.1 |
Ag/Ce | 11 | 782 | 11 ± 0.009 | 50–4000 | 16.4 ± 2.5 | 152.54 ± 8.8 |
Pd/Cu | 10 | 581 | 39 ± 1.20 | 117–14,300 | 34.7 ± 2.02 | 166.2 ± 6.4 |
Pd/Ce | 9 | 496 | 4.55 ± 0.006 | 17–4100 | 13.4 ± 3.2 | 68.0 ± 3.2 |
Ag/Zn | 16 | 375 | 41 ± 1.50 | 17–25,000 | 18.1 ± 0.4 | 96.79 ± 8.56 |
Pt/Cu | 5 | 163 | 5.54 ± 0.002 | 17–25,000 | 26.8 ± 5.0 | 55.2 ± 5.4 |
Electrode | PO Mimetic | Potential, mV | Sensitivity, A M−1 m−2 | Linear Range, μM | Ref. |
---|---|---|---|---|---|
1 GCE | Cu2O/PANI/rGhO | −200 | 394 | 0.8–12,780 | [45] |
GCE | Fe3O4/3D GNCs | −200 | 2742 | 0.8–330 | [46] |
GCE | Ni–Fe PBA-4 HNCs | −50 | 361 | 0.1–20,000 | [47] |
GCE | PB/BG AuNPs-PB/BG | −50 | 2852 11,243 | 4–830 9.2–8100 | [48] |
2 DBD DBD GE | PB Ni-FePBA PB/NZ | −50 | 2100 1500 4500 | 0.5–1000 | [11] |
GCE | MnPBA | 1472 | 3–8610 | [49] | |
GCE | rGhO/Pt-Ag | −50 | 6996 | 5–1500 | [50] |
GCE | Ni-PB | −50 | 3500 | 0.1–1000 | [51] |
Graphite paste | Ni-FePBA Cu-FePBA | −50 | 1130 2030 | 2–1000 0.5–1000 | [52] |
3 GE | PtRu | −50 | 194 | 17–25,000 | [41] |
GE | gCuHCF gFeHCF PO | −50 | 1620 1090 352 | 16–4100 116–14,300 15–20,000 | [42] |
GCE | Ni-FePBA | 0 | 18,000 | up to 100 | [53] |
GCE | PNAANI–PB | 0 | 5073 | 1–1000 | [54] |
GCE | PB | 50 | 6000 | 0.1–100 | [55] |
GCE | Fe/rGhO-Pt | 100 | 3400 | 7.5–4270 | [56] |
GCE | PB | 180 | 10,000/20,000 | 1–5000 | [57] |
Cu/CeS | 1890 | 1.5–20,000 | |||
GE | Au/Cu Fe/Ce | −50 - | 793 1372 | 17–15,000 up to 1000 | This paper |
Commercial Sample | Concentration of H2O2 | CV, % | Producer | ||
---|---|---|---|---|---|
Estimated | Declared, % | ||||
mM | % | ||||
Antiseptic spray for arms | 33.2 | 0.11 | 0.10 | 10.0 | Pharmaceutical factory “Viola”, Zaporizhzhia, Ukraine |
Universal antiseptic solution | 880 | 2.95 | 3.0 | 1.7 | |
Famidez–Sanosil | 588.6 | 1.98 | 2.0 | 1.0 | Ltd Dezomark, Novoyavorivsk, Ukraine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demkiv, O.; Stasyuk, N.; Serkiz, R.; Gayda, G.; Nisnevitch, M.; Gonchar, M. Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Appl. Sci. 2021, 11, 777. https://doi.org/10.3390/app11020777
Demkiv O, Stasyuk N, Serkiz R, Gayda G, Nisnevitch M, Gonchar M. Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Applied Sciences. 2021; 11(2):777. https://doi.org/10.3390/app11020777
Chicago/Turabian StyleDemkiv, Olha, Nataliya Stasyuk, Roman Serkiz, Galina Gayda, Marina Nisnevitch, and Mykhailo Gonchar. 2021. "Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application" Applied Sciences 11, no. 2: 777. https://doi.org/10.3390/app11020777
APA StyleDemkiv, O., Stasyuk, N., Serkiz, R., Gayda, G., Nisnevitch, M., & Gonchar, M. (2021). Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Applied Sciences, 11(2), 777. https://doi.org/10.3390/app11020777