Are Suprapectineal Quadrilateral Surface Buttressing Plates Performances Superior to Traditional Fixation? A Finite Element Analysis
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The Bone-Plate Configurations
2.1.1. Patient-Adapted Plate Geometry Generation
- The whole plate profile was drawn lying on a plane, and extruded (thickness equal to 2 mm) thus obtaining a solid (Figure 1a).
- The suprapectineal portion of the plate was bent in order to recreate an anatomic curvature which follows the arcuate line of the ilium. The bending has been performed in the x-y plane along the z axis so that, at the end of this step, the plate still lies on the x-y plane (Figure 1b)
- The infrapectineal portion of the plate was bent with a 90° curvature with respect to the x-y plane and, afterward, was inflected along the z axis to fit to the quadrilateral surface of the ilium (Figure 1c).
2.1.2. The Plate-Screws Models
2.1.3. The Acetabular Fractures
2.2. Finite Element Models
2.2.1. Meshing
2.2.2. Mechanical Properties
2.2.3. Contact Implementation
2.2.4. Boundary Conditions
2.3. Interfragmentary Movement Analysis (IFM)
3. Results
3.1. Interfragmentary Movement Analysis (IFM)
3.1.1. Axial Strain
- The median direction of the incremental distances (Figure 8b) of SPP C2 is mainly oriented towards a minimum axial expansion (median 1.57%) of the fracture gap; conversely SQBP C1 mainly brings the fracture gap towards minimum compressions (median −0.61%).
- The slightly greater quantity in the SPP C2 model of observations satisfying the optimal range, ascertained by the percentage histogram in Figure 8a (36% against 31% of SQBP C1).
3.1.2. Shear Strain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laird, A.; Keating, J.F. Acetabular fractures: A 16-year prospective epidemiological study. J. Bone Jt. Surg. Br. 2005, 87, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Rinne, P.P.; Laitinen, M.K.; Huttunen, T.; Kannus, P.; Mattila, V.M. The incidence and trauma mechanisms of acetabular fractures: A nationwide study in Finland between 1997 and 2014. Injury 2017, 48, 2157–2161. [Google Scholar] [CrossRef] [PubMed]
- Judet, R.; Judet, J.; Letournel, E. Fractures of the acetabulum: Classification and surgical approach for open reduction. Preliminary report. J. Bone Jt. Surg.-Am. 1964, 46, 1615–1646. [Google Scholar] [CrossRef]
- Tile, M.; Helfet, D.; Kellam, J.; Al, E. Comprehensive Classification of Fractures in the Pelvis and Acetabulum; Maurice E Müller Foundation: Berne, Switzerland, 1995. [Google Scholar]
- Ma, K.; Luan, F.; Wang, X.; Ao, Y.; Liang, Y.; Fang, Y.; Tu, C.; Yang, T.; Min, J. Randomized, controlled trial of the modified Stoppa versus the ilioinguinal approach for acetabular fractures. Orthopedics 2013, 36, 1307–1315. [Google Scholar] [CrossRef] [Green Version]
- Gras, F.; Marintschev, I.; Grossterlinden, L.; Rossmann, M.; Graul, I.; Hofmann, G.O.; Rueger, J.M.; Lehmann, W. The Anterior Intrapelvic Approach for Acetabular Fractures Using Approach-Specific Instruments and an Anatomical-Preshaped 3-Dimensional Suprapectineal Plate. J. Orthop. Trauma 2017, 31, e210–e216. [Google Scholar] [CrossRef]
- Shazar, N.; Eshed, I.; Ackshota, N.; Hershkovich, O.; Khazanov, A.; Herman, A. Comparison of acetabular fracture reduction quality by the ilioinguinal or the anterior intrapelvic (modified Rives-Stoppa) surgical approaches. J. Orthop. Trauma 2014, 28, 313–319. [Google Scholar] [CrossRef]
- Kistler, B.J.; Smithson, I.R.; Cooper, S.A.; Cox, J.L.; Nayak, A.N.; Santoni, B.G.; Sagi, H.C. Are quadrilateral surface buttress plates comparable to traditional forms of transverse acetabular fracture fixation? Clin. Orthop. Relat. Res. 2014, 472, 3353–3361. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, E.; Terzini, M.; Mossa, L.; Bignardi, C.; Costa, P.; Audenino, A.; Vezzoni, A. A structural numerical model for the optimization of double pelvic osteotomy in the early treatment of canine hip dysplasia. Vet. Comp. Orthop. Traumatol. 2017, 30, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Aldieri, A.; Terzini, M.; Osella, G.; Priola, A.M.; Angeli, A.; Veltri, A.; Audenino, A.L.; Bignardi, C. Osteoporotic Hip Fracture Prediction: Is T-Score-Based Criterion Enough? A Hip Structural Analysis-Based Model. J. Biomech. Eng. 2018, 140. [Google Scholar] [CrossRef]
- Putzer, D.; Nogler, M.; Terzini, M.; Mannara, R.; Bignardi, C. A finite element analysis for a new short stem concept design with spherical bone interface for hip resurfacing. Int. J. Mech. Eng. Technol. 2018, 9, 923–935. [Google Scholar]
- Terzini, M.; Zanetti, E.M.; Audenino, A.L.; Putame, G.; Gastaldi, L.; Pastorelli, S.; Panero, E.; Sard, A.; Bignardi, C. Multibody modelling of ligamentous and bony stabilizers in the human elbow. Muscles. Ligaments Tendons J. 2017, 7, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putame, G.; Terzini, M.; Bignardi, C.; Beale, B.; Hulse, D.; Zanetti, E.; Audenino, A. Surgical Treatments for Canine Anterior Cruciate Ligament Rupture: Assessing Functional Recovery Through Multibody Comparative Analysis. Front. Bioeng. Biotechnol. 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putame, G.; Pascoletti, G.; Terzini, M.; Zanetti, E.M.; Audenino, A.L. Mechanical Behavior of Elastic Self-Locking Nails for Intramedullary Fracture Fixation: A Numerical Analysis of Innovative Nail Designs. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Pascoletti, G.; Cianetti, F.; Putame, G.; Terzini, M.; Zanetti, E.M. Numerical simulation of an intramedullary Elastic Nail: Expansion phase and load-bearing behavior. Front. Bioeng. Biotechnol. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Mechlenburg, I.; Nyengaard, J.R.; Gelineck, J.; Soballe, K. Cartilage thickness in the hip joint measured by MRI and stereology—A methodological study. Osteoarthr. Cartil. 2007, 15, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Brandser, E.; Marsh, J.L. Review Acetabular Fractures: EasierClassification with a Systematic. Am. J. Roentgenol. 1998, 171, 1217–1228. [Google Scholar] [CrossRef]
- MacLeod, A.R.; Pankaj, P.; Simpson, A.H.R.W. Does screw-bone interface modelling matter in finite element analyses? J. Biomech. 2012, 45, 1712–1716. [Google Scholar] [CrossRef]
- Wieding, J.; Souffrant, R.; Fritsche, A.; Mittelmeier, W.; Bader, R. Finite element analysis of osteosynthesis screw fixation in the bone stock: An appropriate method for automatic screw modelling. PLoS ONE 2012, 7, e33776. [Google Scholar] [CrossRef]
- Butz, K.D.; Chan, D.D.; Nauman, E.A.; Neu, C.P. Stress distributions and material properties determined in articular cartilage from MRI-based finite strains. J. Biomech. 2011, 44, 2667–2672. [Google Scholar] [CrossRef]
- Chang, T.W.; Wu, C.H.; Liau, J.J.; Cheng, C.K. The Effect of Graft Strength on Knee Laxity and the In-Situ Forces of Grafts after Posterior Cruciate Ligament Reconstruction. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; Dössel, O., Schlegel, W.C., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2010; pp. 809–812. [Google Scholar]
- Tu, Y.K.; Chen, L.W.; Ciou, J.S.; Hsiao, C.K.; Chen, Y.C. Finite element simulations of bone temperature rise during bone drilling based on a bone analog. J. Med. Biol. Eng. 2013, 33, 269–274. [Google Scholar] [CrossRef]
- ASM Aerospace Specification Metals Inc AISI Type 304 Stainless Steel. Available online: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ304A (accessed on 1 December 2020).
- Shockey, J.S.; von Fraunhofer, J.A.; Seligson, D. A measurement of the coefficient of static friction of human long bones. Surf. Technol. 1985, 25, 167–173. [Google Scholar] [CrossRef]
- Damm, P.; Dymke, J.; Ackermann, R.; Bender, A.; Graichen, F.; Halder, A.; Beier, A.; Bergmann, G. Friction in total hip joint prosthesis measured in vivo during walking. PLoS ONE 2013, 8, e78373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, D.D. Theory and practice of lubrication for engineers (John Wiley & Sons, Chichester, 1984. £66.45 hardcover, 700 pp). J. Synth. Lubr. 1985, 1, 314. [Google Scholar] [CrossRef]
- Hughes, A.N.; Jordan, B.A. The mechanical properties of surgical bone screws and some aspects of insertion practice. Injury 1972, 4, 25–38. [Google Scholar] [CrossRef]
- Fitzpatrick, D.C.; Doornink, J.; Madey, S.M.; Bottlang, M. Relative stability of conventional and locked plating fixation in a model of the osteoporotic femoral diaphysis. Clin. Biomech. 2009, 24, 203–209. [Google Scholar] [CrossRef] [Green Version]
- DePuy Synthes LCP Locking Compression Plate Surgical Technique. 2004. Available online: http://synthes.vo.llnwd.net/o16/LLNWMB8/INT%20Mobile/Synthes%20International/Product%20Support%20Material/legacy_Synthes_PDF/DSEM-TRM-0115-0278-3_LR.pdf (accessed on 1 December 2020).
- Cordey, M.J.; Borgeaud, M.; Perren, S.M. Force transfer between the plate and the bone: Relative importance of the bending stiffness of the screws and the friction between plate and bone. Int. J. Care Inj. 2000. [Google Scholar] [CrossRef]
- Karnezis, I.A.; Miles, A.W.; Cunningham, J.L.; Learmonth, I.D. Axial preload in external fixator half-pins: A preliminary mechanical study of an experimental bone anchorage system. Clin. Biomech. 1999, 14, 69–73. [Google Scholar] [CrossRef]
- Phillips, A.T.M.; Pankaj, P.; Howie, C.R.; Usmani, A.S.; Simpson, A.H.R.W. Finite element modelling of the pelvis: Inclusion of muscular and ligamentous boundary conditions. Med. Eng. Phys. 2007, 29, 739–748. [Google Scholar] [CrossRef]
- Bergmann, G.; Bender, A.; Dymke, J.; Duda, G.; Damm, P. Standardized Loads Acting in Hip Implants. PLoS ONE 2016, 11, e0155612. [Google Scholar] [CrossRef]
- Perren, S.M. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: Choosing a new balance between stability and biology. J. Bone Jt. Surg. Br. 2002, 84, 1093–1110. [Google Scholar] [CrossRef]
- Caiti, G.; Dobbe, J.G.G.; Bervoets, E.; Beerens, M.; Strackee, S.D.; Strijkers, G.J.; Streekstra, G.J. Biomechanical considerations in the design of patient-specific fixation plates for the distal radius. Med. Biol. Eng. Comput. 2019, 57, 1099–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-J.; Kim, S.-H.; Chang, S.-H. Finite element analysis using interfragmentary strain theory for the fracture healing process to which composite bone plates are applied. Compos. Struct. 2011, 93, 2953–2962. [Google Scholar] [CrossRef]
- Augat, P.; Burger, J.; Schorlemmer, S.; Henke, T.; Peraus, M.; Claes, L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J. Orthop. Res. 2003, 21, 1011–1017. [Google Scholar] [CrossRef]
- Claes, L.E.; Meyers, N. The direction of tissue strain affects the neovascularization in the fracture-healing zone. Med. Hypotheses 2020, 137, 109537. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.; Claes, L.; Ignatius, A.; Simon, U.; Wehner, T. Disadvantages of interfragmentary shear on fracture healing--mechanical insights through numerical simulation. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2014, 32, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Epari, D.R.; Taylor, W.R.; Heller, M.O.; Duda, G.N. Mechanical conditions in the initial phase of bone healing. Clin. Biomech. 2006, 21, 646–655. [Google Scholar] [CrossRef]
- Dalstra, M.; Huiskes, R. Load transfer across the pelvic bone. J. Biomech. 1995, 28, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, E.M.; Aldieri, A.; Terzini, M.; Calì, M.; Franceschini, G.; Bignardi, C. Additively manufactured custom load-bearing implantable devices: Grounds for caution. Australas. Med. J. 2017, 10. [Google Scholar] [CrossRef]
- Chana-Rodríguez, F.; Mañanes, R.P.; Rojo-Manaute, J.; Gil, P.; Martínez-Gómiz, J.M.; Vaquero-Martín, J. 3D surgical printing and pre contoured plates for acetabular fractures. Injury 2016, 47, 2507–2511. [Google Scholar] [CrossRef]
- Chen, K.; Yang, F.; Yao, S.; Xiong, Z.; Sun, T.; Guo, X. Biomechanical Comparison of Different Fixation Techniques for Typical Acetabular Fractures in the Elderly: The Role of Special Quadrilateral Surface Buttress Plates. J. Bone Jt. Surg. Am. 2020, 102, e81. [Google Scholar] [CrossRef]
Screw N° | Configuration C1 1 | Configuration C2 1 | Length (mm) |
---|---|---|---|
1 | X | X | 48 |
2 | X | X | 48 |
9 | X | 89 | |
10 | X | 79 | |
11 | X | X | 40 |
12 | X | X | 43 |
13 | X | 29 | |
14 | X | 29 | |
15 | X | 22 |
Component | Number of Elements | Global Edge Length (mm) | Element Type |
---|---|---|---|
Transverse fractured Bone | 1,774,743 | 1.50 | Tetra4 |
T-shaped fractured Bone | 1,772,012 | 1.45 | Tetra4 |
Configuration screw C1 | 22,043 | 0.89 | Tetra4 |
Configuration screw C2 | 27,666 | 0.73 | Tetra4 |
SQBP plate | 49,715 | 0.66 | Tetra4 |
SPP plate | 37,070 | 0.56 | Tetra4 |
Cartilage in transverse fracture | 24,915 | 0.65 | Penta6 |
Cartilage in T-shaped fracture | 24,520 | 0.70 | Penta6 |
Femur simulacrum | 169,818 | 1.65 | Tetra4 |
Material | Elastic Modulus E (MPa) | ||
---|---|---|---|
Cortical bone [22] | 16,700 | 0.300 | 1600 |
Cancellous bone [22] | 1000 | 0.055 | 640 |
Screws and plate [23] | 193,000 | 0.290 | 8000 |
Components Pair | Static Friction Coeff. |
---|---|
Femur simulacre—Cartilage | 0.02 [24,25] |
Plate—Bone | 0.37 [24] |
Plate—Screw | 0.10 [26] |
Bone—Bone | 0.40 [24] |
Range | Axial Strain (%) | Shear Strain (%) |
---|---|---|
optimal | (−10, −2) | 0 |
acceptable | (−15, −10) | (0, 15) |
unacceptable | (−∞, −15) | (15, +∞) |
Configuration | Fracture | Acetabulum | Bone-Plate Contact | Overall |
---|---|---|---|---|
SQBP C1 | Transverse | 62.4 | 102.1 | 102.1 |
T-shaped | 68.1 | 174.4 | 382.0 | |
SPP C2 | Transverse | 30.9 | 161.6 | 161.6 |
T-shaped | 70.2 | 157.9 | 412.0 | |
SQBP C2 | Transverse | 32.2 | 101.4 | 111.9 |
T-shaped | 70.5 | 99.1 | 337.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terzini, M.; Pietro, A.D.; Aprato, A.; Artiaco, S.; Massè, A.; Bignardi, C. Are Suprapectineal Quadrilateral Surface Buttressing Plates Performances Superior to Traditional Fixation? A Finite Element Analysis. Appl. Sci. 2021, 11, 858. https://doi.org/10.3390/app11020858
Terzini M, Pietro AD, Aprato A, Artiaco S, Massè A, Bignardi C. Are Suprapectineal Quadrilateral Surface Buttressing Plates Performances Superior to Traditional Fixation? A Finite Element Analysis. Applied Sciences. 2021; 11(2):858. https://doi.org/10.3390/app11020858
Chicago/Turabian StyleTerzini, Mara, Andrea Di Pietro, Alessandro Aprato, Stefano Artiaco, Alessandro Massè, and Cristina Bignardi. 2021. "Are Suprapectineal Quadrilateral Surface Buttressing Plates Performances Superior to Traditional Fixation? A Finite Element Analysis" Applied Sciences 11, no. 2: 858. https://doi.org/10.3390/app11020858
APA StyleTerzini, M., Pietro, A. D., Aprato, A., Artiaco, S., Massè, A., & Bignardi, C. (2021). Are Suprapectineal Quadrilateral Surface Buttressing Plates Performances Superior to Traditional Fixation? A Finite Element Analysis. Applied Sciences, 11(2), 858. https://doi.org/10.3390/app11020858