Salvia Species as Nutraceuticals: Focus on Antioxidant, Antidiabetic and Anti-Obesity Properties
Abstract
:1. Introduction
1.1. Antioxidant Activity
1.1.1. Antioxidant Activity of Salvia Extracts—Chemical Models
Salvia Species | Origin | Solvent Extraction/Phenolics (mg/g Extract) | Results of Screen Assay | Ref. |
---|---|---|---|---|
S. aegyptiaca | Tunisia | MeOH/RA (46.3–41.7), methyl-Carn (9.6–41.4), Api-7-Glc (5.9–8.7), Lut-7-Glc (5.6–7.2) | DPPH (EC50, µg/mL): 21.1–22.6; FRAP (mM Fe(II)/mg): 149–164; ABTS (μM TE/mg dry plant): 312–318 | [41] |
S. africana | Portugal | H2O/RA (77), Lut-O-Glr (18.7), YA-iso (30.8) | DPPH (EC50, μg/mL): 6.6 (H2O), 6.7 (AA); RP (EC50, μg/mL): 21.2 (H2O), 16.1 (BHA); β-carot bleach (EC50 μg/mL): 128.6 (H2O), 41.7 (Trolox); TBARS (EC50 μg/mL): 21.0 (H2O), 23.0 (Trolox) | [26] |
S. africana-lutea | South Africa | MeOH/19-acy-12-mxyCA, 3β-acy-7-mxyRos, 19-acy-7-mxyRos, 19-acy-12-mxy Car, clipd A, clipd B (ND) | ORAC (µmol TE/g): 2588 (19-acy-12-mxyCA), 2234 (3β-acy-7-mxyRos), 735 (19-acy-7-mxyRos), 560 (19-acy-12-mxyCar), 2357 (clipd A), 1502 (clipd B), 3977 (EGCG); TEAC (µmole TE/g): 694 (19-acy-12-mxyCA), 636 (3β-acy-7-mxyRos), 124 (19-acy-7-mxyRos), 440 (19-acy-12-mxyCar), 862 (clipd A), 724 (clipd B), 4146 (EGCG); FRAP (µM acy/g): 1217 (19-acy-12-mxyCA), 2201 (3β-acy-7-mxyRos), 1440 (19-acy-7-mxyRos), 1257 (19-acy-12-mxyCar), 2263 (clipd A), 1480 (clipd B), 7525 (EGCG) | [63] |
S. apiana | Portugal | H2O/Ros (192.4), Sage-deriv (174.1), RA (69.7), HycarAc (56.8) | DPPH (EC50, μg/mL): 13.3 (H2O), 6.7 (AA); RP (EC50, μg/mL): 55.0 (H2O), 16.1 (BHA); β-carot bleach (EC50 μg/mL): 41.2 (H2O), 41.7 (Trolox); TBARS (EC50 μg/mL): 2.79 (H2O), 23.0 (Trolox) | [25] |
S. amplexicaulis | Lithuania | EtOH/H2O/CO2 EtOH/TPC, 97.4; H2O/TPC, 5.9, mg GAE/g | ORAC (µM TE/g DW): 4735 (EtOH), 676 (H2O), 1914 (CO2); ABTS (µM TE/g DW): 1177 (EtOH), 79.5 (H2O) | [59] |
S. amplexicaulis | Macedonia | DCM/Hyper (54), Coumarin (29), EA/Hyper (55), Coumarin (30), H2O/RA (67), Kam-3-O-acetil Glc-7-O-rhm (410), EtOH/Lut- 5-O-Glc (138), Kam-3-O-acetil Glc-7-O-Rhm (636), MeOH/Lut- 5-O-Glc (238), Kam-3-O-acetil Glc-7-O-Rhm (298) | DPPH (EC50, μg/mL): 27.8 (EtOH), 15.8 (H2O), 15.1 (MeOH), 196.5 (EA), 593.2 (DCM), 5.1 (AA); ABTS (mg AAE/g): 2.8 (EtOH), 2.8 (H2O), 2.4 (MeOH), 0.7 (EA), 0.4 (DCM), 2.8 (BHT); FRAP (μmol Fe(II)/g): 979 (EtOH), 1372 (H2O), 1178 (MeOH), 112 (EA), 117 (DCM), 445 (BHT); β-carot bleach (%): 40.4 (EtOH), 41.8 (H2O), 13.3 (MeOH), 58 (BHT) | [49] |
S. argentea | Tunisia | MeOH/RA (30.9–47.2), methyl-Carn (13.1–19.4), Narn (5.4–8.7) | DPPH (EC50, µg/mL): 33.9-77.1; FRAP (mM Fe(II)/mg): 81.6-105; ABTS (μM TE/mg ): 141–173 | [41] |
S. aurita | South Africa | MeOH/Car, Ros, 7-mxy-Ros, 12-mxy-CA, 4,7-dimethyl-Api-ether (ND) | ORAC (µmole TE/g): 23962 (Car), 25790 (Ros), 23939 (7-mxy-Ros), 20247 (12-mxy-CA), 6475 (4,7-dimethyl-Api-ether), 4453 (crude extract), 3977 (EGCG); TEAC (µmole TE/g): 331 (Car), 2055 (Ros), 222 (7-mxy-Ros), 337 (12-mxy-CA), 3191 (4,7-dimethyl-Api-ether), 724 (crude extract), 4146 (EGCG); FRAP (µM AAE/g): 3918 (Car), 1522 (Ros), 1322 (7-mxy-Ros), 508 (12-mxy-CA), 610 (4,7-dimethyl-Api-ether), 394 (crude extract), 7525 (EGCG) | [64] |
S. bicolor | Egypt | MeOH/PrcA (75.2), CouA (70.2), GA (68.2), Lut-7-O-Glc (1.2) | DPPH (EC50, µg/mL): 321 (MeOH), 250 (GA) | [65] |
S. cadmica | Turkey | EA/RA (5.3), Lut (0.8), Api (0.5), MeOH/RA (31.1), Lut (1.2), Hesp (0.9), H2O/RA (20.6), Lut (1.1), Api (0.6) | DPPH (µmol TE/g dry plant): 5.9 (EA), 54.7 (MeOH), 40.5 (H2O); CUPRAC (µmol TE/g dry plant): 20.9 (EA), 50.9 (MeOH), 54.5 (H2O); ABTS (µmol TE/g dry plant): 7.1 (EA), 84.9 (MeOH), 102.2 (H2O); FRAP (µmol TE/g dry plant): 13.5 (EA), 80.0 (MeOH), 98.0 (H2O) | [53] |
S. elegans | Portugal | H2O/RA (35.5), CaffRA (17.9), SA B (7.8) | DPPH (EC50, µg/mL): 10.7 (H2O), 6.69 (AA); FRAP (EC50, µg/mL): 31.3 (H2O), 16.30 (BHA); O2●− (EC50, µg/mL): 30.6 (H2O), 7.8 (GA); NO● (EC50, µg/mL): 91.5 (H2O), 212.1 (AA); RO2● (EC50, µM TE/mg ext): 373.1; XO (EC50 µg/mL): 71.8 (H2O), 0.09 (All) | [27] |
S. fruticosa | Greece: (populations 1 and 2) | MeOH/RA (41.9), ChlgA (1.8), CaffA (0.70) | FRAP (µM Trolox/g DW): 31.83–202.93; 135.81–326.22; ABTS (µM Trolox/g DW): 60.94–242.3; 199.64–312.49; DPPH (µM Trolox/g DW): 182.99–192.62; 185.30–192.19, populations 1 and 2, respetively | [52] |
S. greggii | Portugal | H2O/Lut-7-O-Glc (26.1), Api-C-hex (15.7), RA (10.9) | DPPH (EC50, µg/mL): 21.1 (H2O), 6.69 (AA); FRAP (EC50, µg/mL): 77.9 (H2O), 16.30 (BHA); O2●– (EC50, µg/mL): 61.7 (H2O), 7.8 (GA); NO● (EC50, µg/mL): 167.8 (H2O), 212.1 (AA); RO2● (EC50, µM TE/mg ext): 335.6; XO (EC50 µg/mL): 70.1 (H2O), 0.09 (All) | [27] |
S. halophila | Turkey | Hexane (ND), EA/RA (48.9), CaffA (1.6), MeOH/RA (38.6), MeOH 50%/RA (27.1), p-OH-BA (7.5), o-coumaric (6.4), CaffA (2.4), Lut-Glc (2.3), H2O/RA (5.9) | DPPH (EC50, mg/mL): 0.4 (EA), 0.6 (50% MeOH), 1.0 (H2O, MeOH); FRAP (AAE mmol/g extract): 1.0 (EA, 50% MeOH), <1.0 (H2O, MeOH, Hexane), 0.025 (GA); β-carot bleach (AA%): 80 (Hexan), 65 (EA), <40 (MeOH, 50% MeOH, H2O), 90 (BHT); Iron (II) Thiocyanate (%): 91 (hexan), 89 (EA), 70 (50% MeOH), 68 (H2O), 18 (MeOH), 90 (BHT at 1%); TBARS (%): 94 (hexan), 91 (H2O), 82 (50% MeOH), 80 (EA), 52 (MeOH), 90 (BHT at 1%) | [54] |
S. miltiorrhiza | Commercial | H2O/TPC 66.27; 95% EtOH/TPC 4.97 mg GAE/g | DPPH (EC50, μM AE/g): 202 (H2O), 105 (EtOH) | [66] |
S. miltiorrhiza | China | H2O/Danshensu, SA A, SA B | DPPH (EC50, µg/mL): 131; ORAC (µmol/g): 757 | [67] |
S. nemorosa | Lithuania | EtOH/H2O/CO2 EtOH/TPC (108.7), H2O/TPC 7.6 mg GAE/g | ORAC (µM TE/g DW): 2392 (EtOH), 718 (H2O), 1193 (CO2); ABTS (µM TE/g DW): 1005 (EtOH), 150 (H2O) | [59] |
S. nemorosa | Iran | 80% MeOH/TPC 30.4 mg GAE/g dried plant | DPPH (EC50, μg/mL): 138.4 (80% MeOH), 1.79 (Que) | [16] |
S. nemorosa | Iran | MeOH/RA (7.5), CaffA (0.11), Que (0.15) | DPPH (EC50, μg/mL): 82 (MeOH), 64 (BHT) | [58] |
S. nemorosa | Iran | MeOH/TPC, 114 mg TAE/g | DPPH (EC50 μg/mL): 473 (MeOH), 211 (BHT); β-carot bleach (%): 20 (MeOH), < 20% (BHT, at 500 μg/mL) | [40] |
S. officinalis | Portugal | H2O/Api-O-Glr (48.4), RA (287.3), Scu-O-Glr (13.4) | DPPH (EC50, µg/mL): 34.8 (H2O), 6.69 (AA); FRAP (EC50, µg/mL): 40.0 (H2O), 16.30 (BHA); O2●– (EC50, µg/mL): 32.8 (H2O), 7.8 (GA); NO● (EC50, µg/mL): 118.2 (H2O), 212.1 (AA); RO2● (EC50, µM TE/mg ext): 404.4; XO (EC50 µg/mL): 55.1 (H2O), 0.09 (All) | [27] |
S. officinalis | Iran | MeOH/TPC, 86.4 mg TAE/g | DPPH (EC50 μg/mL): 233 (MeOH), 211 (BHT); β-carot bleach (%): 79 (MeOH), < 20% (BHT, at 500 μg/mL) | [40] |
S. officinalis | Algerian | MeOH-H2O/TPC, 30 mg GAE/g | DPPH (EC50 μg/mL): 1.98; ABTS (EC50 μg/mL): 4.79; OH●(IC50 μg/mL): 1.36 | [43] |
S. officinalis | Portugal | DE/TPC 9.3, EA/TPC 7.0, n-but/TPC 23.9, H2O/TPC 3.3, mg GAE/ml | DPPH (EC50 μg/mL): 3.9 (EA), 4.1 (n-but), 2.8 (H2O); O2●- scav (EC50 μg/mL): 5.5 (DE), 5.3 (EA), 8.9 (n-but) 10.1 (H2O) | [42] |
S. officinalis | Spain | H2O inf/RA (73.9), Lut-O-Glc (37.4), Lut-O-Glr (88.1), H2O dec/RA (93.5), Lut-O-Glc (52.2), Lut-O-Glr (129.8), 80% MeOH/RA (93.2), Lut-O-Glc (56.1), Lut-O-Glr (94.7) | DPPH (EC50 μg/mL): 96 (H2O inf), 75.5 (H2O dec), 33 (80% MeOH); RP (IC50 μg/mL): 84 (H2O inf), 66.5 (H2O dec), 25 (80% MeOH); β-carot bleach (EC50 μg/mL): 139 (H2O inf), 50.9 (H2O dec), 6.6 (80% MeOH); TBARS (EC50 μg/mL): 18.0 (H2O inf), 10.4 (H2O dec), 2.1 (80% MeOH) | [46] |
S. officinalis | Lithuania | EtOH/H2O/CO2 EtOH/TPC, 120.7; H2O/TPC, 13.2, mg GAE/g | ORAC (µM TE/g DW): 2535 (EtOH), 1143 (H2O), 6015 (CO2); ABTS (µM TE/g DW): 1080 (EtOH), 225 (H2O) | [59] |
S. officinalis | Commercial | H2O, MeOH/RA (16.3), SA K isomer (2.7), Lut-hex (2.7), Api-Glr (4.3) | DPPH (EC50, μg/mL): 69 (MeOH), 2.79 (Que); ABTS (EC50 μg/mL): 19.9 (MeOH), 50.8 (H2O), 1.17 (Que) | [44] |
S. officinalis | Commercial | Infusion/RA (12.2–296), Lut-7-O-Glr (37.9–166), CA (9.1–32.9) mg/L. | ORAC (mmol TE/100mL): 0.4 to 1.8 | [45] |
S. officinalis | Tunisia | MeOH/RA (65.1–79.9), methyl-Carn (22.9–34.6), CA (15.8–24.0), Car (23.8–25.8) | DPPH (EC50, µg/mL): 3.4–10.1; FRAP (mM Fe/mg): 179–197; ABTS (μM TE/mg): 645–766 | [41] |
S. officinalis | Portugal | Soxhlet extraction: EtOH, EtOH-H2O/RA (0.443), Car (0.935), CA (0.948); TPC 685.2, 606.3, 227.2 mg GA/g extract, respectively; Traditional extraction: H2O, EtOH-H2O/RA (0.443); TPC 528.2 and 464.5 mg GA/g extract, respectively) | Soxhlet extraction: DPPH (EC50, μg/mL): 116.5 (H2O), 124.7 (EtOH-H2O), 252.3 (EtOH); ABTS (EC50 μg/mL): 88.2 (H2O), 99.3 (EtOH-H2O), 170.6 (EtOH); RO2● (EC50 μg/mL): 0.61 (H2O), 0.52 (EtOH-H2O), 1.35 (EtOH) Traditional extraction: DPPH (EC50, μg/mL): 157.0 (H2O), 131.3 (EtOH-H2O); ABTS (EC50 μg/mL): 125.2 (H2O), 114.5 (EtOH-H2O); RO2●(EC50 μg/mL): 0.69 (H2O), 0.52 (EtOH-H2O) | [47] |
S. officinalis‘Icterina’ | Portugal | H2O/RA (52.7), Api-O-Glr (32.8), Lut-7-O-Glr (18.2) | DPPH (EC50, μg/mL): 10.4 (H2O), 6.68 (AA); RP (EC50, μg/mL): 42.3 (H2O), 16.1 (BHA); β-carot bleach (EC50 μg/mL): 146.6 (H2O), 41.7 (Trolox); TBARS (EC50 μg/mL): 23.0 (H2O), 23.0 (Trolox) | [26] |
S. palaestina | Jordan | n-but/Sal, methyl-3-O-methyl-Rsm, Lut-7-O-(2´´-p-hyb)-β-Glr (ND) | DPPH (EC50, µg/mL): 3.01 (Sal); 1.0 (methyl-3-O-methyl-Rsm), 1.1 (BHA) | [68] |
S. ringens | Macedonia | EtOH/Kam-3-O-acetil-Glc-7-O-Rhm (465), rutin (77), MeOH/RA (36), Kam-3-O- acetil-Glc -7-O-Rhm (287), Rutin (173), DCM/Hyperoside (128), EA (Lut (27), Kam-3-O-acetil-Glc-7-O-Rhm (120) | DPPH (EC50, μg/mL): 17.3 (EtOH), 20.3 (MeOH), 266.2 (DCM), 22.2 (EA), 5.1 (AA); ABTS (mg AAE/g): 2.44 (EtOH), 1.19 (MeOH), 0.58 (DCM), 2.36 (EA), 2.8 (BHT); FRAP (μmol Fe(II)/g): 1088.3 (EtOH), 274.8 (MeOH), 191.1 (DCM), 969.8 (EA), 180 (AA) | [50] |
S. sclarea | Lithuania | EtOH/H2O/CO2 EtOH/TPC, 106.2, H2O/TPC 7.6 mg GAE/g | ORAC (µM TE/g DW): 3820 (EtOH), 867 (H2O), 570 (CO2); ABTS (µM TE/g DW): 1634 (EtOH), 153 (H2O) | [59] |
S. sclarea | Iran | 80% MeOH/TPC 14.8 mg GAE/g dried plant) | DPPH (EC50, μg/mL): 190.7 (80% MeOH), 1.79 (Que) | [16] |
S. sclarea | Iran | MeOH/TPC, 103.3 mg TAE/g | DPPH (EC50 μg/mL): 290 (MeOH), 211 (BHT); β-carot bleach (%): 35 (MeOH), < 20% (BHT, at 500 μg/mL) | [40] |
S. sclarea | Serbia | EtOH/RA (165.3), Lut-7-Glc (5.6), Api-7-Glc (8.5) | DPPH (EC50 μg/mL): 27.8 (EtOH), 6.1 (RA), 2.4 (BHA); β-carot bleach (EC50 μg/mL): 19.1 (EtOH), 32.6 (RA), 0.04 (BHA) | [57] |
S. syriaca | Iran | n-hex, DMC, MeOH/Rut (9.43), Que (0.15), Api (0.24), FA (0.19), RA (0.63) | DPPH (EC50 μg/mL): 210 (n-hex), 245 (DMC), 70 (MeOH), 66 (BHT) | [51] |
S. verbenaca | Tunisia | MeOH/RA (36.9–53.5), Narn (2.9–7.5), Nar (2.4–3.7) | DPPH (EC50 µg/mL): 23–36.3; FRAP (mM Fe(II)/mg): 106–159; ABTS (μM TE/mg ): 165–205 | [41] |
S. virgata | Iran | MeOH/TPC 33.8 mg TAE/g | DPPH (EC50 μg/mL): 198 (MeOH), 211 (BHT); ↓β-carot bleach (%): 95 (MeOH), <20% (BHT, at 500 μg/mL) | [40] |
OtherSalviaspecies | ||||
S. cereal (S. c), S. reuterana (S. r), S. persica (S. p) | Iran | MeOH /TPC 45.7–82.9 mg TAE/g | DPPH (EC50 μg/mL): 598 (S. r), 883 (S. cl), 1810 (S. p), 211 (BHT); β-carot bleach (%): 30 (S. r), 55 (S. c), 95 (S. p), <20% (BHT, at 500 μg/mL) | [40] |
S. aethiopis, S. atropatana, S. eremophila, S. hypoleuca, S. limbata, S. santolinifolia, S. syriaca, S. xanthocheila | Iran | 80% MeOH /TPC 12.5–25.7 mg GAE/g dried plant | DPPH (EC50, μg/mL): 89.5 (S. atropatana), 557 (S. limbata), 1.79 (Que) | [16] |
S. africana-caerulea, S. africana-lutea, S. albicaulis, S. aurita, S. chamelaeagnea, S. disermas, S. dolomítica, S. garipensis, S. lanceolata, S. muirii, S. namaensis, S. radula, S. repens, S. runcinata, S. schlechteri, S. stenophylla | South Africa | MeOH:CHCl3 /TPC 45.6–212 mg GAE/g | DPPH (EC50, µg/mL): 1.61 ( S. schlechteri), 74.2 (S. garipensis), >100 (S. dolomitica, S. radula), 11.1–68.1 (Others); ABTS (EC50, µg/mL): 11.9 (S. muirii), 69.3 (S. radula), 14.6–50 (Others) | [48] |
1.1.2. Antioxidant Activity of Salvia Extracts—In Vitro Cellular and In Vivo Methods
Salvia Species | Origin | Solvent Extraction/Phenolics (mg/g Extract) | Results of Screen Assay | Ref. |
---|---|---|---|---|
In Vitro cellular assays | ||||
S. hydrangea (S.h), S. sclarea (S. s) | Iran | MeOH/TPC: S.h 238, S.s 268, mg GA/g | Inhibition of DNA oxidative damage of neuronal PC12 cells after tratment with 10 µg/mL extract; protection cell survival at 93% (S. h) and 78% (S. s; both 100 µg/mL), in comparision to control. | [56] |
S. officinalis (S. o), S. fruticosa (S. f), S. lavandulaefolia (S. l) | Portugal | H2O (ND) | DNA protection against strand breaks induced by H2O2, 2h: 21% (HeLa cells, S. l), 26% (Caco-2 cells, S. f), at 50 µg/mL extract; 62% (Caco-2 cells, L-O-G), at 20 µM; DNA repair in Caco-2 cells: 62% (S. o), 86% (S. f), at 50 µg/mL extract; 74% (L-O-G), at 20 µM | [69] |
S. officinalis | Commercial | H2O, MeOH/RA (16.3), SA K isomer (2.7), Lut-hex (2.7), Api-Glr (4.3) | HepG2 DNA damage induced by H2O2 and DMNQ: ↓ after 2 mg/mL extracts, at 24h / enzymatic activity: ↑GPx, ↓SOD, after 4, 2 and 1 mg/mL extracts | [44] |
S. santolinifolia Boiss. (S. san), S. sclarea L. (S. s) | Iran | MeOH-H2O (ND) | Protective effects of H2O2-induced intracellular ROS in neuronal PC12 cells (% I): 61.9 (S. s), 61.4 (S. san); inhibition of apoptosis: extract S. s at 100 µg/mL | [70] |
In Vivo experiments | ||||
S. euphratica Montbret, Aucher & Rech. f. var. euphratica (S. e), S. kronenburgii Rech. f. (S. k) | Turkey | EtOH 0.5% or 1% (w/w)/TPC: S. k 41.8, S. e 76.2 mg GAE/g | Ointment application in wound model skin samples from rats, after 7/14 days S. k: NO (16.5/21.8), MDA (8.4/7.5), GSH (11.26/10.01), at 0.5%; S. k: NO (20.9/10.9), MDA (7.9/5.67), GSH (7.6/7.2), at 1%; S. e: NO (28.7/11.6), MDA (8.5/7.2), GSH (15.5/7.3), at 0.5%; S. e: NO (20.8/10.3), MDA (8.1/4.6), GSH (9.3/6.2), at 1%; Positive control: NO (20.1/18.5), MDA (12.3/7.42), GSH (11.27/7.93) | [72] |
S. officinalis | Tunisia | H2O/p-CouA (0.28), SA (0.27) | Protective effects of EtOH-induced gastric and small bowel injuries by alcohol in Wistar rats after treatment with H2O-extract (at 100 and 200 mg/Kg bw), sulf (at 100 mg/Kg bw) and mix (H2O-extract at 50 mg/Kg bw + sulf at 50 mg/Kg bw): ↓MDA (nmol/mg protein) and ↓H2O2 (mmol/mg protein) content, p < 0.05 compared to EtOH group; ↑SOD (U/mg protein), ↑CAT (µM H2O2/min/mg protein) and ↑GPx (nmol GSH/min/mg protein) activity, ↑GSH (nmol/mg protein) and ↑SH (µmol/mg protein), p < 0.05 compared to EtOH group. | [60] |
S. officinalis | Commercial | Liquid extract (ND) | (LPS)-induced inflammation restoration in rats after orally treatment: ↓MDA level (nm/mL/mg Hb) in erytrocyte hemolysate (2.99 at 10 mg/Kg; 2.66 at 30 mg/Kg extract), p < 0.001compared to control and inflammation groups); ↓MDA (nmol/mL) in kidney (2.20 at 10 mg/Kg; 2.15 at 30 mg/Kg extract); ↑SOD % I in erytrocyte hemolysate (67 at 10 mg/Kg; 72 at 30 mg/Kg extract), in liver (84 at 10 mg/Kg; 86 at 30 mg/Kg extract) and in lung (89 at 10 mg/Kg; 94 at 30 mg/Kg extract); ↑CAT (nmol/min/mL) in erytrocyte hemolysate, kidney and lung (1.68 to 13 at 10 mg/Kg; 1.77 to 9.7 at 30 mg/Kg extract); ↑GPx (nmol/min/mL) in liver, kidney and lung (88 to 147 at 10 mg/Kg; 99 to 160 at 30 mg/Kg extract); ↓NO (µmol/L) in liver (1.08 at 30 mg/Kg extract), kidney (3.19 at 10 mg/Kg and 0.77 at 30 mg/Kg extract) and blood plasma (0.87 at 10 mg/Kg); p < 0.001 or p < 0.05 compared to inflammation group) | [73] |
S. officinalis | Slovakia | EtOH (ND) | Oxidative stress restoration of rats hepatocytes: ↑DNA protection against lesions induced by H2O2, p < 0.001; ↑GSH, p < 0.01; ↑GPx (0.0057–0.0062 U/mg protein) after treatment with 6.67–13.3 mg/ml extract in drinking water, p < 0.001 | [74] |
S. przewalskii | Commercial | H2O/SA B (55), RA (316) | Oxidative stress restoration of rats-injured podocytes induced by PAN: ↓8-OHdG after tratment with extract on days 5, 10 and 15; ↓ROS after tratment with extract (158 μg/ml), SA B (8.5 μg/ml), RA (50 μg/ml), control (1 μg/ml), at 24 and 48 h; ↓apoptosis after tratment with extract (316 μg/ml), SA B (17 μg/ml) | [75] |
S. sahendica | Iran | MeOH/TPC, 64.5, EtOH/TPC: 31.1 mg GAE/g | Oxidative stress restoration of rats liver and kidney damage induced by alcohol: ↑SOD, CAT, GPx and GST (four enzymes, U/mg protein),↑GSH (mg/100 g tissue), vit C and E (µmol/mg tissue), after tratment with 0.1 g/kg bw compared to untreated alcoholic rats, p < 0.05 | [76] |
S. triloba | Egypt | MeOH (ND) | Oxidative stress status restoration of Alzheimer’s disease (AD) induced in rats: ↓serum MDA (%I: 19.65% and 12.9%), ↓serum NO (%I: 36.2 and 21.9); serum TAC (↑33.4% and 26.7%), serum SOD (↑17.3% and 4.2%) after treatment with 750 and 375 mg/kg bw, respectively, p < 0.05 comparing to AD group | [77] |
1.2. Antidiabetic and Anti-Obesity Properties
1.2.1. Antidiabetic and Anti-Obesity Properties of Salvia Extracts—In Vitro methods
Salvia Species | Origin | Solvent Extraction/Phenolics (mg/g Extract) | Results of Screen Assay | Ref. |
---|---|---|---|---|
S. africana-lutea | South Africa | MeOH/OlA, UrA, β-amyrin (ND) | α-GlucI (IC50,): 11.3 ± 1.0 (UrA), 17.1 ± 1.0 (β-amyrin) and 22.9 ± 2.0 (OlA), 610.4 ± 1.0 (Acar); α-AmI (IC50, µg/mL): 12.5 ± 0.7 (OlA), 12.2 ± 0.6 (Acar) | [63] |
S. aurita | South Africa | MeOH/4,7-dimethyl-Api-ether, 7-mxy-Ros, 12-mxy-CA, Ros, Car (ND) | α-GlucI (IC50, µg/mL): 4.2 ± 0.7 (7-my-Ros), 16.4 ± 1.1 (Ros), 610.4 ± 1.0 (Acar); α-AmI (IC50, µg/mL): 16.2 ± 0.3 (12-12-my-CA), 19.8 ± 1.4 (Car), 12.2 ± 0.6 (Acar) | [64] |
S. blepharochlaena | Turkey | H2O, DCM, MeOH/RA (22), Lut-O-hex (7.2) | α-AmI (mmol ACAE/g extract): 0.87 (MeOH), 0.28 (H2O), 0.88 (DCM); α-GlucI (mmol ACAE/g extract): 4.62 (MeOH), 3.87 (H2O), 2.24 (DCM); LipI (mg OE/g extract): 25.9 (MeOH), 10.2 (H2O), 65.8 (DCM) | [87] |
S. cadmica | Turkey | EA/RA (5.3), Lut (0.8), Api (0.5), MeOH/RA (31.1), Lut (1.2), Hesp (0.9), H2O/RA (20.6), Lut (1.1), Api (0.6) | α-GlucI (μmol ACE/g extract): 84.42 (EA), 869.21 (MeOH), 609.85(H2O); α-AmI (μmol ACE/g extract): 47.14 (EA), 102.28 (MeOH), 16.25 (H2O); | [53] |
S. elegans | Portugal | H2O/RA (35.5), CaffRA (17.9), SA B (7.8) | α-GlucI (EC50, μg/mL): 36; LipI (% of inhib): 8.2 | [27] |
S. euphratica var. leiocalycina | Turkey | H2O, DCM, MeOH/RA (10.3), Lut-O-Glr (1.6) | α-GlucI (mmol ACAE/g extract): 4.30 (MeOH), 6.18 (H2O), 0.39 (DCM); α-AmI (mmol ACAE/g extract): 0.77 (MeOH), 0.28 (H2O), 0.88 (DCM); LipI (mg OE/g extract): 43.92 (MeOH), 69.1 (DCM) | [87] |
S. greggii | Portugal | H2O/Lut-7-O-Glc (26.1), Api-C-hex (15.7), RA (10.9) | α-GlucI (EC50, μg/mL): 345.3; α-AmI (% of inhib): 6.5; LipI (% of inhib): 14.4 | [27] |
S. nemorosa | Iran | n-hex, DMC, MeOH/RA (7.6), CaffA (0.11), Que (0.15) | α-GlucI (IC50, μg/ml): 121.8 (n-hex), 113.6 (DCM), 19.0 (MeOH), 17.0 (Acar) | [58] |
S. officinalis | Portugal | H2O/Api-O-Glr (48.4), RA (28.3), Scu-O-Glr (13.4) | α-GlucI (EC50, μg/mL): 71.2; LipI (% of inhib): 4.6 | [27] |
S. syriaca | Iran | n-hex, DMC, MeOH/Rut (9.43), Que (0.15), Api (0.24), FA (0.19), RA (0.63) | α-GlucI (IC50, mg/ml): 7.18 (n-hex), 4.14 (DCM), 2.13 (MeOH), 9.6 (Acar); α-AmI (IC50, mg/ml): 2.68 (n-hex), 0.70 (DCM), 3.99 (MeOH), 1.33 (Acar) | [51] |
S. verticillata subsp. amasiaca | Turkey | MeOH, H2O, DCM/RA (67), Api-O-Glr (2.1), SA C der (25) | α-GlucI (mmol ACE/g extract): 7.25 (MeOH), 9.14 (H2O), 10.4 (DCM); α-AmI (mmol ACE/g extract): 0.62 (MeOH), 0.26 (H2O), 0.90 (DCM); LipI (mg OE/g extract): 47.0 (MeOH), 65.3 (DCM) | [87] |
1.2.2. Antidiabetic and Anti-Obesity Properties of Salvia Extracts—In Vivo Methods
Salvia Species | Origin | Solvent Extraction/(Major Components) | Results of Screen Assay | Ref. |
---|---|---|---|---|
S. hispanica L | Commercial | Grounded plant seed (orally) | Clinical trial: 77 overweight or obese patients with type 2 diabetes ↓body weight: 1.9 ± 0.5 kg, 0.3 ± 0.4 kg (control); ↓ waist circumference: 3.5 ± 0.7 cm and 1.1 ± 0.7 cm (control); ↑adiponectin: 6.5 ± 0.7%, no changes in control group | [101] |
S. libanotica | Lebanon | H2O--infusion (ND) | Rats fed a high fat diet: ↓fasting serum glucose: 102.9 ± 10.8 (150 mg/Kg bw), 87.5 ± 6.4 (450 mg/Kg bw), 152.1 ± 7.9 mg/dl (control) ↑fasting serum insulin: 87.5 ± 6.4 (450 mg/Kg bw), 152.1 ± 7.9 mg/dl (control); ↑liver glycogen content: ~2 fold (450 mg/Kg bw, comparing to control); ↑serum HDL: 34.4 ± 2.4 (450 mg/Kg bw), 27.2 ± 1.9 mg/dl (control); ↑HDL/LDL: 2.79 ± 0.32 (150 mg/Kg bw), 3.02 ± 0.31 (450 mg/Kg bw), 1.74 ± 0.18 (control); ↓abdominal fat (% body weight): 0.57 ± 0.06 (450 mg/Kg bw), 0.78 ± 0.08 (control) | [93] |
S. miltiorrhiza | China | H2O (Root) (Danshensu, PrcA, PrcA Ald, RA, SA A, SA B) | Clinical trial: 31 diabetic patients with chronic heart disease received sage extract (5 g, twice per day for 60 days) Oxidative stress restoration: ↓ MDA (nmol/L) at day 30, ↑ GSH (mmol/L), SOD (U/mL), and GSSG-R (nmol/ml) at day 60, compared with baseline and placebo group (only hypoglycemic therapy), p < 0.05 | [100] |
S. officinalis | MeOH (CA, Car) | In vitro: LipI (IC50): 94 μg/ml (MeOH), 12 μg/ml (CA, 36 µM), 4.4 μg/ml (Car, 13 µM), 1.5 ng/ml (orlistat, 3.0 nM); ↑Serum TGA (CA (116 mg/100 ml at 5 mg/kg/day for 14 days); In vivo; ↑body weight (CA (20 mg/kg/day for 14 days)); ↑weight of epidydimal fat pad (CA, 5–20 mg/kg/day) | [91] | |
S. officinalis | Commercial | Sage tablets (150 mg of extract) | Clinical trial: 80 patients with type-2 diabetes received drug (150 mg extract) BS2hpp (mg/dl): time 0–222.0 (sage), 214.6 (placebo); 12th week – 174.5 (sage), 207.7 (placebo); FBG (mg/dl): time 0–144.2 (sage), 142.9 (placebo); 12th week – 115.0 (sage), 143.4 (placebo); TGA (mg/dl): Before Int – 175.1 (sage), 168.5 (placebo); After Int – 180.4 (sage), 149.7 (placebo); TC (mg/dl): Before Int – 192.4 (sage), 190.7 (placebo); After Int – 101 (sage), 181.62 (placebo); LDL (mg/dl): Before Int – 110.4 (sage), 105.3 (placebo); After Int – 101.6 (sage), 102.91 (placebo); HDL (mg/dl): Before Int – 41.4 (sage), 43.3 (placebo); After Int – 42.2 (sage), 44.02 (placebo) | [95] |
S. officinalis | Iran | 80% MeOH-H2O Sage capsules (500 mg of the extract powder) | Clinical trial: 40 patients with type-2 diabetes % change mean (extract group) compared to baseline: FBG ↓ 25.8, HbA1c ↓ 14.4, TC ↓ 17.7, TGA ↓ 32.2, LDL ↓ 19.2, HDL ↑ 34.8; % difference between the extract and placebo groups: FBG 32, HbA1c 22.7, TC 16.9, TGA 56.4, LDL 35.6, HDL 27.6. | [96] |
S. officinalis | Iran | 80% MeOH-H2O Sage capsules (500 mg of the extract powder) | Clinical trial: 67 hypercholesterolemic and/or hypertriglyceridemic patients TC (mg/dl): Before Int – 266.3 (sage), 256.8 (placebo); After Int – 211.3 (sage), 261.8 (placebo); TGA (mg/dl): Before Int – 296.7 (sage), 279.1 (placebo); After Int – 227.7 (sage), 288.3 (placebo); VLDL (mg/dl): Before Int – 58.2 (sage), 56.8 (placebo); After Int – 47.6 (sage), 58.6 (placebo); LDL (mg/dl): Before Int – 151.8 (sage), 167.1 (placebo); After Int – 117.5 (sage), 154.2 (placebo); HDL (mg/dl): Before Int – 49.2 (sage), 48.7 (placebo); After Int – 57.6 (sage), 47.1 (placebo) | [97] |
S. triloba | Jordan | MeOH (ND) | In vivo: Plasma TGA inhibition after high fat diet rats (mg/dl): 73.2 (MeOH), 68.1 (orlistat), 217.8 (untreated rats) In vitro: LipI (IC50): 100.8 μg/ml (MeOH), 114 ng/ml (orlistat) | [92] |
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Morales, P.; Herrera, P.G.; González, M.C.M.; Hurtado, M.C.; Mata, M.C.S. Wild Greens as Source of Nutritive and Bioactive Compounds Over the World. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Ferreira, I.C.F.R., Lillian, B., Morales, P., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2017; pp. 159–198. ISBN 9781118944639. [Google Scholar]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M.I. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol. 2013, 45, 2821–2831. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Ćustić, M.H.; Satovic, Z. Medicinal plants of the family lamiaceae as functional foods-A review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Pinela, J.; Carocho, M.; Dias, M.I.; Caleja, C.; Barros, L.; Ferreira, I.C.F.R. Wild Plant-Based Functional Foods, Drugs, and Nutraceuticals. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Ferreira, I.C.F.R., Lillian, B., Morales, P., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2017; pp. 315–351. ISBN 9781118944639. [Google Scholar]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Karousou, R.; Hanlidou, E.; Kokkini, S. The Sage Plants of Greece: Distribution and Infraspecific Variation. In Sage, the Genus Salvia; Kintzios, S.E., Ed.; Taylor & Francis e-Library: Amsterdam, the Netherlands, 2005; pp. 27–46. ISBN 0-203-34348-4. [Google Scholar]
- Dweck, A.C. Introduction. The Folklore and Cosmetic Use of Various Salvia Species. In Sage, the Genus Salvia; Kintzios, S.E., Ed.; Taylor & Francis e-Library: Amsterdam, the Netherlands, 2005; pp. 1–25. ISBN 0-203-34348-4. [Google Scholar]
- Ulubelen, A. Chemical constituents, 4. Terpenoids in the genus Salvia. In Sage, The Genus Salvia; Kintzios, S.E., Ed.; Taylor & Francis e-Library: Amsterdam, the Netherlands, 2005; Volume 14, pp. 55–68. ISBN 0-203-34348-4. [Google Scholar]
- Karamanos, A.J. Cultivation and breeding: The cultivation of sage. In Sage, The Genus Salvia; Kintzios, S.E., Ed.; Taylor & Francis e-Library: Amsterdam, the Netherlands, 2005; Volume 14, pp. 93–108. ISBN 0-203-34348-4. [Google Scholar]
- Walker, J.B.; Sytsma, K.J. Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Ann. Bot. 2007, 100, 375–391. [Google Scholar] [CrossRef]
- Zhang, X.; Sawhney, V.K.; Davis, A.R. Annular floral nectary with oil-producing trichomes in Salvia farinacea (lamiaceae): Anatomy, histochemistry, ultrastructure, and significance. Am. J. Bot. 2014, 101, 1849–1867. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, Q.; Zhang, C.; Zhang, N.; Cui, Z. An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China. Acta Pharm. 2013, 3, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Firuzi, O.; Miri, R.; Asadollahi, M.; Eslami, S.; Jassbi, A.R. Cytotoxic, Antioxidant and Antimicrobial Activities and Phenolic Contents of Eleven Salvia Species from Iran. Iran. J. Pharm. Res. 2013, 12, 801–810. [Google Scholar]
- Lu, Y.; Foo, L.Y. Polyphenolics of Salvia-a review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-bdour, T.H.; Salgueiro, L. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. Biomed Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hamidpour, M.; Hamidpour, R.; Hamidpour, S.; Shahlari, M. Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer. J. Tradit. Complement. Med. 2014, 4, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Abd Rashed, A.; Abd Rahman, A.Z.; Rathi, D.N.G. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021, 26, 1107. [Google Scholar] [CrossRef] [PubMed]
- Pirintsos, S.A.; Bariotakis, M.; Kampa, M.; Sourvinos, G.; Lionis, C.; Castanas, E. The Therapeutic Potential of the Essential Oil of Thymbra capitata (L.) Cav., Origanum dictamnus L. and Salvia fruticosa Mill. And a Case of Plant-Based Pharmaceutical Development. Front. Pharmacol. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Adrar, N.; Oukil, N.; Bedjou, F. Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Ind. Crops Prod. 2016, 88, 112–119. [Google Scholar] [CrossRef]
- Tosun, A.; Khan, S.; Kim, Y.S.; Calín-sánchez, Á.; Hysenaj, X.; Carbonell-barrachina, Á.A. Essential Oil Composition and Anti-Inflammatory Activity of Salvia officinalis L (Lamiaceae) in Murin Macrophages. Trop. J. Pharm. Res. 2014, 13, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Poulios, E.; Giaginis, C.; Vasios, G.K. Current State of the Art on the Antioxidant Activity of Sage (Salvia spp) and Its Bioactive Components. Planta Med. 2020, 86, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.S.F.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. The health-benefits and phytochemical profile of Salvia apiana and Salvia farinacea var. Victoria blue decoctions. Antioxidants 2019, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, R.C.F.; Cardoso, S.M. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis “Icterina” and Salvia mexicana aqueous Extracts. Molecules 2019, 24, 4327. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.; Catarino, M.D.; Afonso, A.F.; Silva, A.M.S.; Cardoso, S.M. Salvia elegans, Salvia greggii and Salvia officinalis Decoctions: Antioxidant Activities and Inhibition of Carbohydrate and Lipid Metabolic Enzymes. Molecules 2018, 23, 3169. [Google Scholar] [CrossRef] [Green Version]
- Mangge, H.; Becker, K.; Fuchs, D.; Gostner, J.M. Antioxidants, inflammation and cardiovascular disease. World J. Cardiol. 2014, 6, 462–477. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev. 2016, 2016, 17–19. [Google Scholar] [CrossRef] [Green Version]
- Guillaumet-Adkins, A.; Yañez, Y.; Peris-Diaz, M.D.; Calabria, I.; Palanca-Ballester, C.; Sandoval, J. Epigenetics and Oxidative Stress in Aging. Oxid. Med. Cell. Longev. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdú-Queralt, A. Dietary polyphenols in the prevention of stroke. Oxid. Med. Cell. Longev. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozkan, G.; Kamiloglu, S.; Ozdal, T.; Boyacioglu, D.; Capanoglu, E. Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules 2016, 21, 257. [Google Scholar] [CrossRef] [PubMed]
- Jassbi, A.R.; Zare, S.; Firuzi, O.; Xiao, J. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem. Rev. 2016, 15, 829–867. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D. The Chemical Composition and Nutritional Value of Chia Seeds — Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Afonso, A.F.; Pereira, R. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-inflammatory and Antitumoral Properties. Antioxidants 2020, 9, 814. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Jeshvaghani, Z.A.; Rahimmalek, M.; Talebi, M.; Goli, S.A.H. Comparison of total phenolic content and antioxidant activity in different Salvia species using three model systems. Ind. Crops Prod. 2015, 77, 409–414. [Google Scholar] [CrossRef]
- Farhat, M.B.; Landoulsi, A.; Chaouch-Hamada, R.; Sotomayor, J.A.; Jordán, M.J. Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats. Ind. Crops Prod. 2013, 49, 904–914. [Google Scholar] [CrossRef]
- Albano, S.M.; Miguel, M.G. Biological activities of extracts of plants grown in Portugal. Ind. Crops Prod. 2011, 33, 338–343. [Google Scholar] [CrossRef]
- Brahmi, N.; Scognamiglio, M.; Pacifico, S.; Mekhoukhe, A.; Madani, K.; Fiorentino, A.; Monaco, P. 1H NMR based metabolic profiling of eleven Algerian aromatic plants and evaluation of their antioxidant and cytotoxic properties. Food Res. Int. 2015, 76, 334–341. [Google Scholar] [CrossRef]
- Kozics, K.; Klusová, V.; Srančíková, A.; Mučaji, P.; Slameňová, D.; Hunáková, Ľ.; Kusznierewicz, B.; Horváthová, E. Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells. Food Chem. 2013, 141, 2198–2206. [Google Scholar] [CrossRef]
- Walch, S.G.; Tinzoh, L.N.; Zimmermann, B.F.; Stühlinger, W.; Lachenmeier, D.W. Antioxidant Capacity and Polyphenolic Composition as Quality Indicators for Aqueous Infusions of Salvia officinalis L. (sage tea). Front. Pharmacol. 2011, 2, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2015, 170, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, S.F.; Ferreira, H.; Nenes, N.M. Antioxidant and Anti-Inflammatory Activities of Cytocompatible Salvia officinalis Extracts: A Comparison between Traditional and Soxhlet Extraction. Antioxidants 2020, 9, 1157. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Viljoen, A.M.; Steenkamp, P. Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chem. 2010, 119, 684–688. [Google Scholar] [CrossRef]
- Alimpić, A.; Knežević, A.; Milutinović, M.; Stević, T.; Šavikin, K.; Stajić, M.; Marković, S.; Marin, P.D.; Matevski, V.; Duletić-Laušević, S. Biological activities and chemical composition of Salvia amplexicaulis Lam. extracts. Ind. Crops Prod. 2017, 105, 1–9. [Google Scholar] [CrossRef]
- Alimpić, A.; Pljevljakušić, D.; Šavikin, K.; Knežević, A.; Ćurčić, M.; Veličković, D.; Stević, T.; Petrović, G.; Matevski, V.; Vukojević, J.; et al. Composition and biological effects of Salvia ringens (Lamiaceae) essential oil and extracts. Ind. Crops Prod. 2015, 76, 702–709. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Bahadori, S.; Asghari, B.; Movahhedin, N. Functional components, antidiabetic, anti-Alzheimer’s disease, and antioxidant activities of Salvia syriaca L. Int. J. Food Prop. 2017, 20, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Sarrou, E.; Martens, S.; Chatzopoulou, P. Metabolite profiling and antioxidative activity of Sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind. Crops Prod. 2016, 94, 240–250. [Google Scholar] [CrossRef]
- Kocak, M.S.; Sarikurkcu, C.; Cengiz, M.; Kocak, S.; Uren, M.C.; Tepe, B. Salvia cadmica: Phenolic composition and biological activity. Ind. Crops Prod. 2016, 85, 204–212. [Google Scholar] [CrossRef]
- Koşar, M.; Göger, F.; Hüsnü Can Başer, K. In vitro antioxidant properties and phenolic composition of Salvia halophila Hedge from Turkey. Food Chem. 2011, 129, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Almada-Taylor, G.; Díaz-Rubio, L.; Salazar-Aranda, R.; de Torres, N.W.; Uranga-Solis, C.; Delgadillo-Rodríguez, J.; Ramos, M.A.; Padrón, J.M.; Hernández-Martínez, R.; Córdova-Guerrero, I. Biological activities of extracts from aerial parts of Salvia pachyphylla epling ex munz. Plants 2018, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Asadi, S.; Ahmadiani, A.; Esmaeili, M.A.; Sonboli, A.; Ansari, N.; Khodagholi, F. In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: A comparative study. Food Chem. Toxicol. 2010, 48, 1341–1349. [Google Scholar] [CrossRef]
- Kostic, M.; Petrovic, M.B.; Jevtovic, T.; Jovic, M.; Petrovic, A.; Slavoljub, Ž. Anti-inflammatory effect of the Salvia sclarea L. ethanolic extract on lipopolysaccharide-induced periodontitis in rats. J. Ethnopharmacol. 2017, 199, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, M.B.; Asghari, B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Abbas-Mohammadi, M.; Bahadori, S. Salvia nemorosa L.: A novel source of bioactive agents with functional connections. Food Sci. Thecnology 2017, 75, 42–50. [Google Scholar] [CrossRef]
- Šulniūtė, V.; Ragažinskienė, O.; Venskutonis, P.R. Comprehensive Evaluation of Antioxidant Potential of 10 Salvia Species Using High Pressure Methods for the Isolation of Lipophilic and Hydrophilic Plant Fractions. Plant Foods Hum. Nutr. 2016, 71, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Jedidi, S.; Aloui, F.; Rtibi, K.; Sammari, H.; Selmi, H.; Rejeb, A.; Toumi, L.; Sebai, H. Individual and synergistic protective properties of: Salvia officinalis decoction extract and sulfasalazine against ethanol-induced gastric and small bowel injuries. RSC Adv. 2020, 10, 35998–36013. [Google Scholar] [CrossRef]
- Bandoniene, D.; Murkovic, M.; Venskutonis, P.R. Determination of rosmarinic acid in sage and borage leaves by high-performance liquid chromatography with different detection methods. J. Chromatogr. Sci. 2005, 43, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Pavić, V.; Jakovljević, M.; Molnar, M.; Jokić, S. Extraction of carnosic acid and carnosol from sage (Salvia officinalis l.) leaves by supercritical fluid extraction and their antioxidant and antibacterial activity. Plants 2019, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Etsassala, N.G.E.R.; Badmus, J.A.; Waryo, T.T.; Marnewick, J.L.; Cupido, C.N.; Hussein, A.A.; Iwuoha, E.I. Alpha-glucosidase and alpha-amylase inhibitory activities of novel abietane diterpenes from Salvia Africana-Lutea. Antioxidants 2019, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Etsassala, N.G.E.R.; Badmus, J.A.; Marnewick, J.L.; Iwuoha, E.I.; Nchu, F.; Hussein, A.A. Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of salvia aurita constituents. Antioxidants 2020, 9, 1149. [Google Scholar] [CrossRef]
- Ibrahim, T.A. Chemical composition and biological activity of extracts from Salvia bicolor Desf. growing in Egypt. Molecules 2012, 17, 11315–11334. [Google Scholar] [CrossRef] [Green Version]
- Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; Shanmugam, K.; Münch, G.; Wu, M.J.; et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med. 2012, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Li, H.; Yuan, Y.-N.; Dai, H.-Q.; Yang, B. Antioxidant activity and components of a traditional Chinese medicine formula consisting of Crataegus pinnatifida and Salvia miltiorrhiza. BMC Complement. Altern. Med. 2013, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Al-Qudah, M.A.; Al-Jaber, H.I.; Abu Zarga, M.H.; Abu Orabi, S.T. Flavonoid and phenolic compounds from Salvia palaestina L. growing wild in Jordan and their antioxidant activities. Phytochemistry 2014, 99, 115–120. [Google Scholar] [CrossRef]
- Ramos, A.A.; Azqueta, A.; Pereira-Wilson, C.; Collins, A.R. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J. Agric. Food Chem. 2010, 58, 7465–7471. [Google Scholar] [CrossRef]
- Tavakkoli, M.; Miri, R.; Jassbi, A.R.; Erfani, N.; Asadollahi, M.; Ghasemi, M.; Saso, L.; Firuzi, O. Carthamus, Salvia and Stachys species protect neuronal cells against oxidative stress-induced apoptosis. Pharm. Biol. 2014, 52, 1550–1557. [Google Scholar] [CrossRef]
- Gong, J.; Ju, A.; Zhou, D.; Li, D.; Zhou, W.; Geng, W.; Li, B.; Li, L.; Liu, Y.; He, Y.; et al. Salvianolic acid Y: A new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis. Molecules 2015, 20, 683–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güzel, S.; Özay, Y.; Kumaş, M.; Uzun, C.; Özkorkmaz, E.G.; Yıldırım, Z.; Ülger, M.; Güler, G.; Çelik, A.; Çamlıca, Y.; et al. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed. Pharmacother. 2019, 111, 1260–1276. [Google Scholar] [CrossRef] [PubMed]
- Kolac, U.K.; Ustuner, M.C.; Tekin, N.; Ustuner, D.; Colak, E.; Entok, E. The Anti-Inflammatory and Antioxidant Effects of Salvia officinalis on Lipopolysaccharide-Induced Inflammation in Rats. J. Med. Food 2017, 20, 1193–1200. [Google Scholar] [CrossRef]
- Horváthová, E.; Srančíková, A.; Regendová-Sedláčková, E.; Melušová, M.; Meluš, V.; Netriová, J.; Krajčovičová, Z.; Slameňová, D.; Pastorek, M.; Kozics, K. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress. Mutagenesis 2016, 31, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Liu, Y.; Yang, Y.; Xu, J.; Dai, D.; Yan, C.; Li, X.; Tang, R.; Yu, C.; Ren, H. Antioxidative Stress Effects of Salvia przewalskii Extract in Experimentally Injured Podocytes. Nephron 2016, 134, 253–271. [Google Scholar] [CrossRef]
- Esmaeili, M.A.; Sonbol, A.; Kanani, M.R.; Sadeghi, H.; Karimian Pour, N. Salvia sahendica prevents tissue damages induced by alcohol in oxidative stress conditions: Effect on liver and kidney oxidative parameters. J. Med. Plants Res. 2009, 3, 276–283. [Google Scholar]
- Mahdy, K.; Shaker, O.; Wafay, H.; Nassar, Y.; Hassan, H.; Hussein, A. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 31–42. [Google Scholar]
- World Health Organization. Global Strategy on Diet, Physical Activity and Health; World Health Organization: Geneva, Switzerlan, 2004; Volume 164, ISBN 92 4 159222 2. [Google Scholar]
- WHO. Obesity and Overweight. Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 22 July 2021).
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013, 5, 1218. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H.; Chen, J.; Li, W.L. Natural triterpenoids for the treatment of diabetes mellitus: A review. Nat. Prod. Commun. 2016, 11, 1579–1586. [Google Scholar] [CrossRef] [Green Version]
- Etsassala, N.G.E.R.; Hussein, A.A.; Nchu, F. Potential application of some lamiaceae species in the management of diabetes. Plants 2021, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 2016, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Emin, M.; Hazar-yavuz, A.N.; Yildiz, S.; Ertas, B.; Ayaz, B.; Taskin, T.; Alan, S.; Kabasakal, L. restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin / nicotinamide-induced type 2 diabetic rats. J. Ethnopharmacol. 2019, 231, 29–38. [Google Scholar] [CrossRef]
- Lunagariya, N.A.; Patel, N.K.; Jagtap, S.C.; Bhutani, K.K. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. EXCLI J. 2014, 13, 897–921. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Llorent-martínez, E.J.; Luisa, M.; Córdova, F.; Babak, M.; Mocan, A.; Locatelli, M.; Aktumsek, A. Chemical composition and biological activities of extracts from three Salvia species: S. blepharochlaena, S. euphratica var. leiocalycina, and S. verticillata subsp. amasiaca. Ind. Crop. Prod. 2018, 111, 11–21. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Menichini, F.; Bonesi, M.; Piccolo, V.; Statti, G.A.; de Cindio, B.; Houghton, P.J.; Menichini, F. In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes. J. Ethnopharmacol. 2008, 119, 109–116. [Google Scholar] [CrossRef]
- Asghari, B.; Salehi, P.; Sonboli, A.; Ebrahimi, S.N. Flavonoids from Salvia chloroleuca with alpha-Amylsae and alpha-Glucosidase Inhibitory Effect. Iran. J. Pharm. Res. 2015, 14, 609–615. [Google Scholar] [PubMed]
- Ma, H.Y.; Gao, H.Y.; Sun, L.; Huang, J.; Xu, X.M.; Wu, L.J. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge. J. Nat. Med. 2011, 65, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K.; Matsuda, H.; Shimoda, H.; Nishida, N.; Kasajima, N.; Yoshino, T.; Morikawa, T.; Yoshikawa, M. Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorganic Med. Chem. Lett. 2004, 14, 1943–1946. [Google Scholar] [CrossRef]
- Arabiyat, S.; Al-Rabi’ee, A.; Zalloum, H.; Hudaib, M.; Mohammad, M.; Bustanji, Y. Antilipolytic and hypotriglyceridemic effects of dietary Salvia triloba Lf (Lamiaceae) in experimental rats. Trop. J. Pharm. Res. 2016, 15, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Bassil, M.; Daher, C.F.; Mroueh, M.; Zeeni, N. Salvia libanotica improves glycemia and serum lipid profile in rats fed a high fat diet. BMC Complement. Altern. Med. 2015, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Moradabadi, L.; Montasser Kouhsari, S.; Fehresti Sani, M. Hypoglycemic effects of three medicinal plants in experimental diabetes: Inhibition of rat intestinal α-glucosidase and enhanced pancreatic Insulin and cardiac Glut-4 mRNAs expression. Iran. J. Pharm. Res. 2013, 12, 385–397. [Google Scholar]
- Behradmanesh, S.; Derees, F.; Rafieian-kopaei, M. Effect of Salvia officinalis on diabetic patients. J. Ren. Inj. Prev. 2013, 2, 51–54. [Google Scholar] [CrossRef]
- Kianbakht, S.; Dabaghian, F.H. Improved glycemic control and lipid profile in hyperlipidemic type 2 diabetic patients consuming Salvia officinalis L. leaf extract: A randomized placebo. Controlled clinical. Complement. Ther. Med. 2013, 21, 441–446. [Google Scholar] [CrossRef]
- Kianbakht, S.; Abasi, B.; Perham, M.; Dabaghian, F.H. Antihyperlipidemic Effects of Salvia officinalis L. Leaf Extract in Patients with Hyperlipidemia: A Randomized Double—Blind Placebo—Controlled Clinical Trial. Phyther. Res. 2011, 1853, 1849–1853. [Google Scholar] [CrossRef]
- Sá, C.M.; Ramos, A.A.; Azevedo, M.F.; Lima, C.F. Sage Tea Drinking Improves Lipid Profile and Antioxidant Defences in Humans. Int. J. Mol. Sci. 2009, 10, 3937–3950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.C.; Chang, Y.C.; Hu, W.L.; Hung, Y.C. Oxidative Stress and Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.; Wang, S.; Fan, P.; Huo, D.; Dai, L.; Qian, Q. Effect of Salvia miltiorrhiza hydrophilic extract on the endothelial biomarkers in diabetic patients with chronic artery disease. Phyther. Res. 2012, 26, 1575–1578. [Google Scholar] [CrossRef]
- Vuksan, V.; Jenkins, A.L.; Brissette, C.; Choleva, L.; Jovanovski, E. Nutrition, Metabolism & Cardiovascular Diseases Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: A double-blind randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 138–146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Salvia Species as Nutraceuticals: Focus on Antioxidant, Antidiabetic and Anti-Obesity Properties. Appl. Sci. 2021, 11, 9365. https://doi.org/10.3390/app11209365
Afonso AF, Pereira OR, Cardoso SM. Salvia Species as Nutraceuticals: Focus on Antioxidant, Antidiabetic and Anti-Obesity Properties. Applied Sciences. 2021; 11(20):9365. https://doi.org/10.3390/app11209365
Chicago/Turabian StyleAfonso, Andrea F., Olívia R. Pereira, and Susana M. Cardoso. 2021. "Salvia Species as Nutraceuticals: Focus on Antioxidant, Antidiabetic and Anti-Obesity Properties" Applied Sciences 11, no. 20: 9365. https://doi.org/10.3390/app11209365
APA StyleAfonso, A. F., Pereira, O. R., & Cardoso, S. M. (2021). Salvia Species as Nutraceuticals: Focus on Antioxidant, Antidiabetic and Anti-Obesity Properties. Applied Sciences, 11(20), 9365. https://doi.org/10.3390/app11209365