Chitosan Beads Incorporated with Graphene Oxide/Titanium Dioxide Nanoparticles for Removing an Anionic Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Cross-Linking Chitosan Beads
2.2.1. Synthesis of the CS-GLA and CS-TiO2-GLA Beads
2.2.2. Synthesis of the Beads, including Graphene Oxide
2.3. Adsorption Experiments
2.4. Effect of Graphene Oxide on the FD&C Red 40 Dye Removal
2.5. Swelling Test of Cross-Linked Beads
2.6. Kinetic Experiments
3. Results and Discussion
3.1. Characterization of the Cross-Linked Chitosan Beads
3.2. Optimization for the Removal of the FD&C Red 40 Dye in an Aqueous Solution
3.2.1. Titanium Dioxide Amount Effect
3.2.2. Effect of pH
3.2.3. Effect of the Initial Concentration of FD&C Red 40 Dye
3.2.4. Interaction Effects on Response and Process Optimization
3.2.5. Effect of the Addition and Dose of Graphene Oxide on the Removal Efficiency of FD&C Red 40 Dye
3.3. Swelling Test
3.4. Kinetic Modeling
3.5. Adsorption Mechanism of FD&C Red 40 Dye
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alcocer, S.; Picos, A.; Uribe, A.R.; Pérez, T.; Peralta-Hernández, J.M. Comparative study for degradation of industrial dyes by electrochemical advanced oxidation processes with BDD anode in a laboratory stirred tank reactor. Chemosphere 2018, 205, 682–689. [Google Scholar] [CrossRef]
- Esteves, M.F.; Silva, J.D. Electrochemical degradation of reactive blue 19 dye in textile wastewater. In Proceedings of the 4th AUTEX World Textile Conference, Roubaix, France, 22–24 June 2004; pp. 1–6. [Google Scholar]
- Robinson, T.; Chandran, B.; Nigam, P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res. 2002, 36, 2824–2830. [Google Scholar] [CrossRef]
- Weisburger, J.H. Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat. Res. Mol. Mech. Mutagen. 2002, 506–507, 9–20. [Google Scholar] [CrossRef]
- Alves de Lima, R.O.; Bazo, A.P.; Salvadori, D.M.F.; Rech, C.M.; de Palma Oliveira, D.; de Aragão Umbuzeiro, G. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2007, 626, 53–60. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Hou, H.; Wang, J.; Hao, C. Ultrasonic method to synthesize Glucan-g-poly(acrylic acid)/Sodium Lignosulfonate Hydrogels and Studies of Their Adsorption of Cu2+ from Aqueous Solution. ACS Sustain. Chem. Eng. 2017, 5, 6438–6446. [Google Scholar] [CrossRef]
- Gupta, V.K. Suhas Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.L.; Ronix, A.; Pezoti, O.; Souza, L.S.; Leandro, P.K.T.; Bedin, K.C.; Beltrame, K.K.; Cazetta, A.L.; Almeida, V.C. Mesoporous activated carbon from industrial laundry sewage sludge: Adsorption studies of reactive dye Remazol Brilliant Blue R. Chem. Eng. J. 2016, 303, 467–476. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N.; Lazaridis, N.K. Low-swelling chitosan derivatives as biosorbents for basic dyes. Langmuir 2008, 24, 4791–4799. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, N.K.; Kyzas, G.Z.; Vassiliou, A.A.; Bikiaris, D.N. Chitosan derivatives as biosorbents for basic dyes. Langmuir 2007, 23, 7634–7643. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A.Z.; Ibrahim, M.H.; Tan, K.B.; Gholami, Z.; Amouzgar, P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym. 2014, 113, 115–130. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Bin, J.-P.; Bu, H.-T.; Jiang, G.-B.; Zeng, M.-H. Removal of anionic dye eosin Y from aqueous solution using ethylenediamine modified chitosan. Carbohydr. Polym. 2011, 84, 1350–1356. [Google Scholar] [CrossRef]
- Galan, J.; Trilleras, J.; Zapata, P.A.; Arana, V.A.; Grande-Tovar, C.D. Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology. Life 2021, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.H.; Shazwani, N.; Mubarak, A.; Abdulhameed, A.S. Tunable Schiff & base-cross-linked chitosan composite for the removal of reactive red 120 dye: Adsorption and mechanism study. Int. J. Biol. Macromol. 2019, 142, 732–741. [Google Scholar] [PubMed]
- Naicker, C.; Nombona, N.; Zyl, W.E. Van Fabrication of novel magnetic chitosan/graphene-oxide/metal oxide nanocomposite beads for Cr (VI) adsorption. Chem. Pap. 2019, 74, 529–541. [Google Scholar] [CrossRef]
- Grande-Tovar, C.D.; Mangadlao, J.; Fan, J.; De Leon, A.; Delgado-Ospina, J.; Rojas, J.G.; Rodrigues, D.F.; Advincula, R. Chitosan Cross-Linked Graphene Oxide Nanocomposite Films with Antimicrobial Activity for Application in Food Industry. Macromol. Symp. 2017, 374, 1–8. [Google Scholar]
- Mohammad, A.; Saud, A.; Jawad, A.H. International Journal of Biological Macromolecules Box-Behnken design to optimize the synthesis of new cross-linked chitosan-glyoxal/TiO2 nanocomposite: Methyl orange adsorption and mechanism studies. Int. J. Biol. Macromol. 2019, 129, 98–109. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 183–191. [Google Scholar] [CrossRef]
- Zapata, P.A.; Palza, H.; Delgado, K.; Rabagliati, F.M. Novel Antimicrobial Polyethylene Composites Prepared by Metallocenic In Situ Polymerization with TiO 2 -Based Nanoparticles. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4055–4062. [Google Scholar] [CrossRef]
- Mahshid, S.; Askari, M.; Ghamsari, M.S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J. Mater. Process. Technol. 2007, 189, 296–300. [Google Scholar] [CrossRef]
- Grande-Tovar, C.D.; Castro, J.I.; Valencia, C.H.; Zapata, P.A.; Solano, A.M.; Lopez Florez, E.; Chaur, M.N.; Eliana, M.; Zapata, M.E.V.; Hernandez, J.H.M. Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies. Molecules 2020, 25, 2308. [Google Scholar] [CrossRef]
- Zhao, F.; Yu, B.; Yue, Z.; Wang, T.; Wen, X.; Liu, Z.; Zhao, C. Preparation of porous chitosan gel beads for copper (II) ion adsorption. J. Hazard. Mater. 2007, 147, 67–73. [Google Scholar] [CrossRef]
- Dhanya, A.; Aparna, K. Synthesis and Evaluation of TiO2/Chitosan Based Hydrogel for the Adsorptional Photocatalytic Degradation of Azo and Anthraquinone Dye under UV Light Irradiation. Procedia Technol. 2016, 24, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Piccin, J.S.; Dotto, G.L.; Vieira, M.L.G.; Pinto, L.A.A. Kinetics and Mechanism of the Food Dye FD & C Red 40 Adsorption onto Chitosan. J. Chem. Eng. Data 2011, 56, 3759–3765. [Google Scholar]
- Dotto, G.L.; Moura, J.M.; Cadaval, T.R.S.; Pinto, L.A.A. Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem. Eng. J. 2013, 214, 8–16. [Google Scholar] [CrossRef]
- Senthilkumaar, S.; Varadarajan, P.R.; Porkodi, K.; Subbhuraam, C.V. Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. J. Colloid Interface Sci. 2005, 284, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Angel, M.; Edison, G.; Izabela, D. Coagulation- flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J. Environ. Manag. 2017, 191, 189–197. [Google Scholar]
- Saud, A.; Jawad, A.H.; Mohammad, A. Bioresource Technology Synthesis of chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles for adsorption of reactive orange 16 dye using a response surface methodology approach. Bioresour. Technol. 2019, 293, 122071. [Google Scholar]
- Fan, L.; Luo, C.; Sun, M.; Qiu, H.; Li, X. Colloids and Surfaces B: Biointerfaces Synthesis of magnetic-cyclodextrin –chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf. B Biointerfaces 2013, 103, 601–607. [Google Scholar] [CrossRef]
- Bevziuk, K.; Chebotarev, A.; Snigur, D.; Bazel, Y.; Fizer, M.; Sidey, V. Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R. J. Mol. Struct. 2017, 1144, 216–224. [Google Scholar] [CrossRef]
- Salem, M.A.; Elsharkawy, R.G.; Ayad, M.I.; Elgendy, M.Y. Silver nanoparticles deposition on silica, magnetite, and alumina surfaces for effective removal of Allura red from aqueous solutions. J. Sol-Gel Sci. Technol. 2019, 91, 523–538. [Google Scholar] [CrossRef]
- Saha, T.K.; Bishwas, R.K.; Karmaker, S.; Islam, Z. Adsorption Characteristics of Allura Red AC onto Sawdust and Hexadecylpyridinium Bromide-Treated Sawdust in Aqueous Solution. ACS Omega 2020, 5, 13358–13374. [Google Scholar] [CrossRef]
- Sahraei, R.; Sekhavat Pour, Z.; Ghaemy, M. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J. Clean. Prod. 2017, 142, 2973–2984. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, T.; Bao, H.; Li, L. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr. Polym. 2011, 83, 1908–1915. [Google Scholar] [CrossRef]
- Fan, J.; Shi, Z.; Lian, M.; Li, H.; Yin, J. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J. Mater. Chem. A 2013, 1, 7433–7443. [Google Scholar] [CrossRef]
- Konicki, W.; Aleksandrzak, M.; Moszyński, D.; Mijowska, E. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. J. Colloid Interface Sci. 2017, 496, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Badot, P.-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.K.; Shahi, V.K. Selective Adsorption of Pb (II) from Aqueous Medium by Cross- linked Chitosan-Functionalized Graphene Oxide Adsorbent. ACS Sustain. Chem. Eng. 2018, 7, 1427–1436. [Google Scholar] [CrossRef]
- Mahaninia, M.H.; Wilson, L.D. Cross-linked chitosan beads for phosphate removal from aqueous solution. J. Appl. Polym. Sci. 2016, 133, 42949. [Google Scholar] [CrossRef]
- Yadollahi, M.; Farhoudian, S.; Barkhordari, S.; Gholamali, I.; Farhadnejad, H.; Bezar, H.M. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int. J. Biol. Macromol. 2015, 82, 273–278. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Ai, Y.; Liang, Y.; Ji, Y.; Li, J.; Hayat, T.; Alsaedi, A.; Wang, X. Spectroscopic and theoretical study on the counterion effect of Cu(II) ions and graphene oxide interaction with titanium dioxide. Environ. Sci. Nano 2016, 3, 1361–1368. [Google Scholar] [CrossRef]
- Saud, A.; Mohammad, A.; Jawad, A.H. Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J. Clean. Prod. 2019, 232, 43–56. [Google Scholar]
- Wang, H.; Shen, H.; Shen, C.; Li, Y.; Ying, Z.; Duan, Y. Kinetics and Mechanism Study of Mercury Adsorption by Activated Carbon in Wet Oxy-Fuel Conditions. Energy Fuels 2019, 33, 1344–1353. [Google Scholar] [CrossRef]
- Cheng, C.S.; Deng, J.; Lei, B.; He, A.; Zhang, X.; Ma, L.; Li, S.; Zhao, C. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. J. Hazard. Mater. 2013, 263, 467–478. [Google Scholar] [CrossRef]
- Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K. Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent. Arab. J. Chem. 2017, 10, S1883–S1893. [Google Scholar] [CrossRef] [Green Version]
- Ghaneian, M.T.; Bhatnagar, A.; Ehrampoush, M.H.; Amrollahi, M.; Jamshidi, B.; Dehvari, M.; Taghavi, M. Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: Kinetic modeling studies. Int. J. Environ. Sci. Technol. 2017, 14, 331–340. [Google Scholar] [CrossRef]
- Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 2012, 91, 361–368. [Google Scholar] [CrossRef]
System | Formulation |
---|---|
CS-GLA | Chitosan, glutaraldehyde |
CS-TiO2-GLA | Chitosan, titanium dioxide nanoparticles, glutaraldehyde |
CS-GO-TiO2-GLA | Chitosan, grapheme oxide, titanium dioxide nanoparticles, glutaraldehyde |
TiO2 (mg) (X1) | Initial Dye Concentration (mgL−1) (X2) | pH (X3) | Code Levels |
---|---|---|---|
31.8 | 4.8 | 1.6 | −1.7 |
100 | 15 | 3.0 | −1.0 |
200 | 30 | 5.0 | 0.0 |
300 | 45 | 7.0 | 1.0 |
368 | 55 | 8.3 | 1.7 |
Run | TiO2 (mg) | Initial Dye Concentration (mgL−1) | pH | Removal Efficiency (%) | |
---|---|---|---|---|---|
1 | 2 | ||||
1 | 100 | 15 | 3.0 | 100.0 | 100.0 |
2 | 200 | 4.8 | 5.0 | 100.0 | 100.0 |
3 | 100 | 15 | 7.0 | 90.0 | 83.6 |
4 | 200 | 30 | 5.0 | 72.0 | 77.2 |
5 | 200 | 30 | 8.36 | 76.8 | 70.7 |
6 | 300 | 45 | 7.0 | 17.3 | 20.9 |
7 | 300 | 15 | 3.0 | 100.0 | 100.0 |
8 | 200 | 30 | 5.0 | 69.6 | 65.5 |
9 | 100 | 45 | 7.0 | 28.7 | 21.8 |
10 | 200 | 55.2 | 5.0 | 100.0 | 92.3 |
11 | 368.2 | 30 | 5.0 | 55.3 | 69.9 |
12 | 31.8 | 30 | 5.0 | 71.8 | 70.9 |
13 | 300 | 15 | 7.0 | 54.3 | 64.8 |
14 | 200 | 30 | 1.64 | 82.1 | 100 |
15 | 300 | 45 | 3.0 | 100.0 | 100 |
16 | 100 | 45 | 3.0 | 99.9 | 99.8 |
Factors | Sum of Squares | df a | Mean Square | F | Value-p b |
---|---|---|---|---|---|
A: TiO2 | 332.35 | 1 | 332.35 | 1.40 | 0.25 |
B: Red 40 | 1719.46 | 1 | 1719.46 | 7.25 | 0.01 |
C: pH | 8333.46 | 1 | 8333.46 | 35.12 | 0.00 |
AA | 244.94 | 1 | 244.94 | 1.03 | 0.32 |
AB | 111.09 | 1 | 111.09 | 0.47 | 0.50 |
AC | 276.90 | 1 | 276.90 | 1.17 | 0.30 |
BB | 1003.32 | 1 | 1003.32 | 4.23 | 0.05 |
BC | 2578.10 | 1 | 2578.10 | 10.86 | 0.00 |
CC | 61.87 | 1 | 61.87 | 0.26 | 0.61 |
Blocks | 13.06 | 1 | 13.06 | 0.26 | 0.82 |
Total error | 4983.58 | 21 | 237.31 | ||
Total | 20.385.40 | 31 | |||
R2 | 0.75 | ||||
D2adj | 0.64 | ||||
Adequate Precision | 8.56 |
GO (wt.% Relative to TiO2) | Run CCD | Initial Dye Concentration (mg L−1) | pH | Removal Efficiency (%) |
---|---|---|---|---|
1% | 6 | 45 | 7.0 | 83.5 |
13 | 15 | 7.0 | 98.5 | |
15 | 45 | 3.0 | 100.0 | |
3% | 6 | 45 | 7.0 | 96.7 |
13 | 15 | 7.0 | 99.3 | |
15 | 45 | 3.0 | 100.0 | |
10% | 6 | 45 | 7.0 | 91.3 |
13 | 15 | 7.0 | 98.2 | |
15 | 45 | 3.0 | 99.0 |
Run CCD | Initial Dye Concentration (mg L−1) | pH | Removal Efficiency (%) | |
---|---|---|---|---|
CS-TiO2-GLA | CS-GO-TiO2-GLA | |||
6 | 45 | 7.0 | 17.3 | 96.7 |
13 | 15 | 7.0 | 54.3 | 99.3 |
15 | 45 | 3.0 | 100.0 | 100.0 |
Beads | Swelling (%) | |
---|---|---|
Distilled Water | HCl 0.1 M | |
CS | 139.8 | Soluble |
CS-GLA | 39.5 | 63.0 |
CS-TiO2-GLA | 36.2 | 74.3 |
CS-GO-TiO2-GLA | 33.7 | 44.9 |
Pseudo First Order | |||
qe(mg·g−1) | k1(min−1) | R2 | |
CS-TiO2-GLA | 2.05 | 0.003 | 0.7823 |
CS-GO-TiO2-GLA | 4.96 | 0.021 | 0.8979 |
Pseudo Second Order | |||
qe(mg·g−1) | k1(min−1) | R2 | |
CS-TiO2-GLA | 9.39 | 0.0001 | 0.6844 |
CS-GO-TiO2-GLA | 5.88 | 0.0013 | 0.9888 |
Elovich | |||
β(mg·g−1) | α(mg·g−1·min−1) | R2 | |
CS-TiO2-GLA | 1.22 | 0.0533 | 0.8225 |
CS-GO-TiO2-GLA | 1.01 | 0.1408 | 0.9504 |
Intraparticular Diffusion | |||
C | Ki(mg·g−1·min1/2) | R2 | |
CS-TiO2-GLA | −0.57 | 0.1721 | 0.9661 |
CS-GO-TiO2-GLA | −0.23 | 0.2709 | 0.9828 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solano, M.A.; Galan, J.; Vallejo, W.; Arana, V.A.; Grande-Tovar, C.D. Chitosan Beads Incorporated with Graphene Oxide/Titanium Dioxide Nanoparticles for Removing an Anionic Dye. Appl. Sci. 2021, 11, 9439. https://doi.org/10.3390/app11209439
Solano MA, Galan J, Vallejo W, Arana VA, Grande-Tovar CD. Chitosan Beads Incorporated with Graphene Oxide/Titanium Dioxide Nanoparticles for Removing an Anionic Dye. Applied Sciences. 2021; 11(20):9439. https://doi.org/10.3390/app11209439
Chicago/Turabian StyleSolano, Moisés A., Johanna Galan, William Vallejo, Victoria A. Arana, and Carlos David Grande-Tovar. 2021. "Chitosan Beads Incorporated with Graphene Oxide/Titanium Dioxide Nanoparticles for Removing an Anionic Dye" Applied Sciences 11, no. 20: 9439. https://doi.org/10.3390/app11209439
APA StyleSolano, M. A., Galan, J., Vallejo, W., Arana, V. A., & Grande-Tovar, C. D. (2021). Chitosan Beads Incorporated with Graphene Oxide/Titanium Dioxide Nanoparticles for Removing an Anionic Dye. Applied Sciences, 11(20), 9439. https://doi.org/10.3390/app11209439