An Empirical Correlation between the Residual Gravity Anomaly and the H/V Predominant Period in Urban Areas and Its Dependence on Geology in Andean Forearc Basins
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Arica
2.2. Iquique
2.3. Mejillones
2.4. Viña del Mar
2.5. Santiago
3. Analysis of Geophysical Data
3.1. Seismic Classification of the Soils
3.2. Gravity and H/V Correlation
3.3. Seismic and Gravimetric Basement Depth Inversion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Telford, W.M.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990; p. 311. [Google Scholar]
- Carmichael, R.; Henry, G.K. Gravity exploration for groundwater and bedrock topography in glaciated areas. Geophysics 1977, 42, 850–859. [Google Scholar] [CrossRef]
- Chandler, V.W. Gravity Investigation for Potential Ground-Water Resources in Rock County, Minnesota. Minnesota Geological Survey, 1994. Retrieved from the University of Minnesota Digital Conservancy. Available online: https://hdl.handle.net/11299/60798 (accessed on 10 January 2021).
- Murty, B.; Raghavan, V. The gravity method in groundwater exploration in crystalline rocks: A study in the peninsular granitic region of Hyderabad, India. Hydrogeol. J. 2002, 10, 307–321. [Google Scholar] [CrossRef]
- Wright, P.M. Gravity and Magnetic Methods in Mineral Exploration. In Economic Geology, 75th Anniversary Volume; Skinner, B.J., Ed.; Economic Geology Publishing Company: New Haven, CT, USA, 1981; pp. 829–839. [Google Scholar]
- Jaffal, M.; Goumi, N.E.; Kchikach, A.; Aïfa, T.; Khattach, D.; Manar, A. Gravity and magnetic investigations in the Haouz basin, Morocco. Interpretation and mining implications. J. Afr. Earth Sci. 2010, 58, 331–340. [Google Scholar] [CrossRef]
- Yañez, G.; Muñoz, M.; Flores-Aqueveque, V.; Bosch, A. Gravity derived depth to basement in Santiago basin, Chile: Implications for its geological evolution, hydrogeology, low enthalpy geothermal, soil characterization and geo-hazards. Andean Geol. 2015, 42, 147–172. [Google Scholar]
- Maringue, J.; Yáñez, G.; Sáez, E.; Podestá, L.; Figueroa, R.; Estay, N.P. Dynamic characterization of the Mejillones Basin in northern Chile, using combined geophysical field measurements. Eng. Geol. 2017, 233, 238–254. [Google Scholar] [CrossRef]
- Nogoshi, M.; Igarashi, T. On the amplitude characteristics of microtremor (part 2). J. Seism. Soc. Jpn. 1971, 24, 26–40. [Google Scholar]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using707microtremor on the ground surface. Railw. Tech. Res. Inst. Q. Rep. 1989, 30, 25–33. [Google Scholar]
- Bonnefoy-Claudet, S.; Cornou, C.; Bard, P.Y.; Cotton, F.; Moczo, P.; Kristek, J.; Fäh, D. H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations. Geophys. J. Int. 2006, 167, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Fäh, D. Microzonation of the city of Basel. J. Seism. 1997, 1, 87–102. [Google Scholar] [CrossRef]
- Leyton, F.; Ruiz, S.; Sepúlveda, S.; Contreras, J.; Rebolledo, S.; Astroza, M. Microtremors’ hvsr and its correlation with surface geology and damage observed after the 2010 maule earthquake (Mw 8.8) at talca and curicó, central Chile. Eng. Geol. 2013, 161, 26–33. [Google Scholar] [CrossRef]
- Becerra, A.; Podestá, L.; Monetta, R.; Sáez, E.; Leyton, F.; Yañez, G. Seismic microzoning of Arica and Iquique, Chile. Nat. Hazards 2015, 79, 567–586. [Google Scholar] [CrossRef]
- Eker, A.; Kokar, M.; Akgün, H. Evaluation of site effect within the tectonic basin in the northern side of Ankara. Eng. Geol. 2015, 192, 76–91. [Google Scholar] [CrossRef]
- Pastén, C.; Sáez, M.; Ruiz, S.; Leyton, F.; Salomón, J.; Poli, P. Deep characterization of the Santiago Basin using HVSR and cross-correlation of ambient seismic noise. Eng. Geol. 2016, 201, 57–66. [Google Scholar] [CrossRef]
- Hobiger, M.; Bard, P.Y.; Cornou, C.; Le Bihan, N. Single station determination of Rayleighwave ellipticity by using the random decrement technique (RayDec). Geophys. Res. Lett. 2009, 36, 1–4. [Google Scholar] [CrossRef]
- Hobiger, M.; Le Bihan, N.; Cornou, C.; Bard, P.-Y. Multicomponent signal processing for Rayleigh wave ellipticity estimation: Application to seismic hazard assessment. IEEE Signal Process. Mag. 2012, 29, 29–39. [Google Scholar] [CrossRef]
- Hobiger, M.; Cornou, C.; Wathelet, M.; Di Giulio, G.; Knapmeyer-Endrun, B.; Renalier, F.; Bard, P.-Y.; Savvaidis, A.; Hailemikael, S.; Le Bihan, N.; et al. Ground structure imaging by inversions of Rayleigh wave ellipticity: Sensitivity analysis and application to European strong-motion sites. Geophys. J. Int. 2013, 192, 207–229. [Google Scholar] [CrossRef] [Green Version]
- Dahm, T.; Kühn, D.; Ohrnberger, M.; Kröger, J.; Wiederhold, H.; Reuther, C.-D.; Dehghani, A.; Scherbaum, F. Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments: Application to Hamburg, Germany. Geophys. J. Int. 2010, 181, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Özalaybey, S.; Zor, E.; Ergintav, S.; Tapırdamaz, M.C. Investigation of 3-D basin structures in the Izmit Bay area (Turkey) by single-station microtremor and gravimetric methods. Geophys. J. Int. 2011, 186, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Maresca, R.; Berrino, G. Investigation of the buried structure of the Volturara Irpina Basin (southern Italy) by microtremor and gravimetric data. J. Appl. Geophys. 2016, 128, 96–109. [Google Scholar] [CrossRef]
- Montalva, G.A.; Chávez-Garcia, F.J.; Tassara, A.; Jara Weisser, D.M. Site Effects and Building Damage Characterization in Concepción after the Mw 8.8 Maule Earthquake. Earthq. Spectra 2016, 32, 1469–1488. [Google Scholar] [CrossRef]
- Podestá, L.; Sáez, E.; Yáñez, G.; Leyton, F. Geophysical study and 3D modeling of site effects in Viña del Mar city, Chile. Earthq. Spectra 2019, 35, 1329–1349. [Google Scholar] [CrossRef]
- Bonnefoy-Claudet, S.; Baize, S.; Bonilla, L.F.; Berge-Thierry, C.; Pasten, C.; Campos, J.; Volant, P.; Verdugo, R. Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements. Geophys. J. Int. 2009, 176, 925–937. [Google Scholar] [CrossRef] [Green Version]
- Ibs-von Seht, M.; Wolhenberg, J. Microtremor measurements used to map thickness of soft sediments. Bull. Seismol. Soc. Am. 1999, 89, 250–259. [Google Scholar] [CrossRef]
- Delgado, J.; Casado, C.L.; Estevez, A.; Giner, J.; Cuenca, A.; Molina, S. Mapping soft soils in the Segura river valley (SE Spain): A case study of microtremors as an exploration tool. J. Appl. Geophys. 2000, 45, 19–32. [Google Scholar] [CrossRef]
- Parolai, S.; Bormann, P.; Milkereit, C. New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). B. Seismol. Soc. Am. 2002, 92, 2521–2527. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Weber, B.; Scherbaum, F. On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany. J. Earthq. Eng. 2004, 8, 909–926. [Google Scholar] [CrossRef]
- Biswas, R.; Baruah, S.; Bora, D.K. Mapping sediment thickness in Shillong City of Northeast India through empirical relationship. J. Earthq. 2015, 2015, 572–619. [Google Scholar] [CrossRef] [Green Version]
- Livaoğlu, H.; Irmak, T.S. An empirical relationship between seismic bedrock depth and fundamental frequency for Değirmendere (Kocaeli-Turkey). Environ. Earth Sci. 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Boobalan, A.; Shaivan, H.S. Establishing Empirical Correlation between Sediment Thickness and Resonant Frequency using HVSR for the Indo-Gangetic Plain. Curr. Sci. 2019, 117, 1482. [Google Scholar] [CrossRef]
- INE. Censo de Población y Vivienda 2017; Instituto Nacional de Estadística: Santiago, Chile, 2017. [Google Scholar]
- Karakouzian, M.; Candia, M.A.; Wyman, R.V.; Watkins, M.D.; Hudyma, N. Geology of Lima, Peru. Environ. Eng. Geosci. 1997, III, 55–88. [Google Scholar] [CrossRef]
- Coltorti, M.; Ollier, C. Geomorphic and tectonic evolution of the Ecuadorian Andes. Geomorpholog 2000, 32, 1–19. [Google Scholar] [CrossRef]
- Sernageomin. Mapa Geológico de Chile 1:1.000.000. In Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 2002, Serie Geología Básica 75, 1 Mapa en 3 Hojas; Sernageomin: Santiago, Chile, 2002. [Google Scholar]
- Garcıa, M.; Gardeweg, M.; Clavero, J.; Herail, G. Hoja arica, region de tarapaca. In Serv. Nac. Geol. Minerıa Serie Geologia Basica 84, 1; Sernageomin: Santiago, Chile, 2004. [Google Scholar]
- Maldonado, G. Caracterizacion geologica de los suelos de fundacion de la ciudad de Arica. XV region de Arica y Parinacota. Ph.D. Thesis, Universidad Catolica del Norte, Antofagasta, Chile, 2014. [Google Scholar]
- FONDEF Project D10I1027 (2012–2015). Available online: sigas.sernageomin.cl (accessed on 15 March 2021).
- Marquardt, C.; Marinovic, N.; Muñoz, V. Geologıa de las ciudades de iquique y alto hospicio, region de tarapaca. Carta Geol. Chile Ser. Geol. Basica 2008, 113, 33. [Google Scholar]
- Vásquez, P.; Sepúlveda, F. Cartas Iquique y Pozo Almonte, Región de Tarapacá. Servicio Nacional de Geologia y Mineria. In Carta Geológica de Chile, Serie Geología Básica Santiago; Sernageomin: Santiago, Chile, 2013; pp. 162–163. [Google Scholar]
- García-Pérez, T.; Marquardt, C.; Yáñez, G.; Cembrano, J.; Gomila, R.; Santibañez, I.; Maringue, J. Insights on the structural control of a Neogene forearc basin in Northern Chile: A geophysical approach. Tectonophysics 2018, 736, 1–14. [Google Scholar] [CrossRef]
- Niemeyer, H. El complejo igneo-sedimentario del Cordón de Lila, Región de Antofagasta: Signficado tectónico. Rev. Geol. Chile 1989, 16, 163–181. [Google Scholar]
- González, J. Geología y estructura submarina de la Bahía de Mejillones: Su vinculación con la deformación activa en la plataforma emergida a los 23°S. In Tesis Para Optar al Título de Geólogo; Universidad Católica del Norte: Antofagasta, Chile, 2013. [Google Scholar]
- D’aubarede, G. Evaluación de Los Conocimientos Existentes sobre Asbesto, Bentonita, Boratos, Carbonato de Soda, Diatomita, Magnesio, Sulfato de Aluminio, Sulfato Sódico, Titanio, 2ª Edición Programa de las Naciones Unidas para el Desarrollo of. De Cooperación Técnica, Corporación de Fomento de la Producción; Instituto de Investigación de Recursos Naturales: Santiago, Chile, 1974. [Google Scholar]
- Gana, P.; Wall, R.; Gutiérrez, A. Mapa Geológico del Área Valparaíso-Curacaví. Regiones 440 de Valparaíso y Metropolitana. Mapa Geológico Sernageomin N° 1; Servicio Nacional de Geología y Minería: Santiago, Chile, 1996. [Google Scholar]
- Leyton, F.; Sepúlveda, S.; Astroza, M.; Rebolledo, S.; González, L.; Ruiz, R.; Foncea, C.; Herrera, M.; Lavado, J. Zonificación sísmica de la cuenca de Santiago. In X Congreso Chileno de Sismología e Ingeniería Antisísmica; Achisina: Santiago, Chile, 2010. [Google Scholar]
- Charrier, R.; Baeza, O.; Elgueta, S.; Flynn, J.J.; Gans, P.; Kay, S.M.; Muñoz, N.; Wyss, A.R.; Zurita, E. Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33–36°S). J. S. Am. Earth Sci. 2002, 15, 117–139. [Google Scholar] [CrossRef]
- Charrier, R.; Bustamante, M.; Comte, D.; Elgueta, S.; Flynn, J.J.; Iturra, N.; Muñoz, N.; Pardo, M.; Thiele, R.; Wyss, A.R. The Abanico extensional basin: Regional extension, chronology of tectonic inversion and relation to shallow seismic activity and Andean uplift. Neues Jahrb. Geol. Palaontol. Abh. 2005, 236, 43–78. [Google Scholar] [CrossRef]
- Sellés, D.; Gana, P. Geología del Área Talagante-San Francisco de Mostazal, Regiones Metropolitana de Santiago y del Libertador General Bernardo O’Higgins; Servicio Nacional de Geología y Minería, Serie Geología Básica: Santiago, Chile, 2001; p. 30. [Google Scholar]
- Rauld, R. Deformación cortical y peligro sísmico asociado a la Falla San Ramón en el frente cordillerano de Santiago, Chile central (33oS). Ph.D. Thesis, Universidad de Chile, Santiago, Chile, 2011; p. 265, (Unpublished). [Google Scholar]
- Vergara, L.; Verdugo, R. Condiciones geológicas-geotécnicas de la cuenca de Santiago y su relación con la distribución de daños del terremoto del 27F. Obras. Proy. 2015, 17, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Leyton, F.; Ramírez, S.; Vásquez, A. Uso y limitaciones de la Técnica de Nakamura en la clasificación sísmica de suelos. In Proceedings of the VII Congreso Chileno de Geotecnia, Concepcion, Bio Bio, Chile, 28–30 November 2012. [Google Scholar]
- Stockwell, R. A basis for efficient representation of the S-transform. Digit. Signal Process. 2007, 17, 371–393. [Google Scholar] [CrossRef]
- NCH 433 mod. D.S. Nº 61 MINVU. Reglamento Que Fija el Diseño Sísmico de Edificios y Deroga Decreto Nº 117, de 2010; Ministerio de Vivienda y Urbanismo: Santiago, Chile, 2011. (In Spanish) [Google Scholar]
- Verdugo, R.; Ochoa-Cornejo, F.; Gonzalez, J.; Valladares, G. Site effect and site classification in areas with large earthquakes. Soil Dyn. Earthq. Eng. 2018, 126, 105071. [Google Scholar] [CrossRef]
- Wathelet, M.; Chatelain, J.L.; Cornou, C.; Di Giulio, G.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 2020, 91, 1878–1889. [Google Scholar] [CrossRef]
- Charrier, R.; Farías, M.; Maksaev, V. Evolución tectónica, paleogeográfica y metalogénica durante el Cenozoico en los Andes de Chile norte y central e implicaciones para las regiones adyacentes de Bolivia y Argentina. Rev. Asoc. Geol. Argent. 2009, 65, 5–35. [Google Scholar]
Category | First Criterion: Vs,30 or Vs < 900 (m/s) | Second Criterion: T0 (s) | Site Type |
---|---|---|---|
A | ≥900 | <0.15 or flat HVSR | Rock, cemented soil |
B | ≥500 | <0.30 or flat HVSR | Soft or fractured rock, very dense/firm ground |
C | ≥350 | <0.40 or flat HVSR | Dense/firm soil |
D | ≥180 | <1 or flat HVSR | Moderately dense/firm soil |
E | <180 | Medium compactness/consistency soil |
Site (Fig.) | H/V T0 (s) | Seismic Classification (Table 1) | Vs (m/s) | H/V Amplitude (A0) | Gravity Residual (mGal) | Seismic Basement Depth (m) | Gravity Basement Depth (m) |
---|---|---|---|---|---|---|---|
Viña (Figure 11) | 0.72 | D | 242 | 7.2 | −1.72 | 48 | 55 |
Mejillones (Figure 12) | 5.9 | D | 390 | 1.2 | −29.2 | 570 | 580 |
Santiago (Figure 13) | 0.68 | D | 288 | 5.5 | −1.15 | 50 | 40 |
Iquique (Figure 14) | 0.25 | C | 380 | 2.9 | −1.2 | 29 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maringue, J.; Sáez, E.; Yañez, G. An Empirical Correlation between the Residual Gravity Anomaly and the H/V Predominant Period in Urban Areas and Its Dependence on Geology in Andean Forearc Basins. Appl. Sci. 2021, 11, 9462. https://doi.org/10.3390/app11209462
Maringue J, Sáez E, Yañez G. An Empirical Correlation between the Residual Gravity Anomaly and the H/V Predominant Period in Urban Areas and Its Dependence on Geology in Andean Forearc Basins. Applied Sciences. 2021; 11(20):9462. https://doi.org/10.3390/app11209462
Chicago/Turabian StyleMaringue, José, Esteban Sáez, and Gonzalo Yañez. 2021. "An Empirical Correlation between the Residual Gravity Anomaly and the H/V Predominant Period in Urban Areas and Its Dependence on Geology in Andean Forearc Basins" Applied Sciences 11, no. 20: 9462. https://doi.org/10.3390/app11209462
APA StyleMaringue, J., Sáez, E., & Yañez, G. (2021). An Empirical Correlation between the Residual Gravity Anomaly and the H/V Predominant Period in Urban Areas and Its Dependence on Geology in Andean Forearc Basins. Applied Sciences, 11(20), 9462. https://doi.org/10.3390/app11209462