Drying Kinetics of Wheat (Triticum aestivum L., cv. ‘Pionier’) during Thin-Layer Drying at Low Temperatures
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material and Sample Preparation
2.2. Drying Experiments
2.3. Modeling of Drying Behavior
2.4. Analytical Estimation of Moisture Diffusion Coefficients
2.5. Statistical Analysis
3. Results and Discussion
3.1. Equilibrium Moisture Content
3.2. Evaluation of the Drying Models
3.3. Drying Characteristics
3.4. Generalized Model
3.5. Effective Moisture Diffusion
3.6. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Kernel-specific surface area, m2m−3 | |
A0, A1 | Coefficients of drying model, – |
C1, C2,C3 | Coefficients of sorption isotherm model, – |
D | Effective moisture diffusion coefficient, m2s−1 |
d | Diameter of sample holder, mm |
h | Height of sample holder, mm |
d.b. | Dry basis, – |
k | Drying constant, min−1 |
kpred | Predicted drying constant, min−1 |
kobs | Observed drying constant, min−1 |
MAPE | Mean absolute percentage error, % |
N | Number of observations, – |
n | Drying model coefficient, – |
p | Probability level, – |
R2 | Coefficient of determination, – |
Re | Equivalent radius of wheat kernel, m |
RH | Relative humidity of drying air, % |
T | Temperature of drying air, °C |
v | Airflow velocity of drying air, ms−1 |
w.b. | Wet basis, % |
X* | Moisture ratio, – |
X*pred | Predicted moisture ratio, – |
X*obs | Observed moisture ratio, – |
X0 | Initial moisture content, kg kg−1 d.b. |
Xeq | Equilibrium moisture content, kg kg−1 d.b. |
Xt | Instantaneous moisture content, kg kg−1 d.b. |
Xpred | Predicted moisture content, kg kg−1 d.b. |
Xobs | Observed moisture content, kg kg−1 d.b. |
t | Drying time, min |
t0 | Initial drying time, min |
Δt | Drying time interval, min |
Appendix A
T = 10 °C | T = 30 °C | T = 50 °C | |||
---|---|---|---|---|---|
RH, % | Xeq, kg kg−1d.b. | RH, % | Xeq, kg kg−1d.b. | RH, % | Xeq, kg kg−1d.b. |
12.3 | 0.056 ± 0.001 | 7.4 | 0.036 ± 0.001 | 5.7 | 0.023 ± 0.001 |
23.4 | 0.081 ± 0.001 | 21.6 | 0.063 ± 0.005 | 18.9 | 0.041 ± 0.010 |
33.5 | 0.105 ± 0.001 | 32.4 | 0.097 ± 0.001 | 30.5 | 0.082 ± 0.002 |
44.1 | 0.129 ± 0.019 | 43.2 | 0.103 ± 0.001 | 42.7 | 0.084 ± 0.001 |
62.2 | 0.146 ± 0.001 | 56.0 | 0.123 ± 0.003 | 50.9 | 0.095 ± 0.000 |
72.1 | 0.168 ± 0.001 | 68.9 | 0.147 ± 0.001 | 65.3 | 0.118 ± 0.001 |
75.7 | 0.179 ± 0.001 | 75.3 | 0.165 ± 0.001 | 74.5 | 0.138 ± 0.004 |
86.8 | 0.217 ± 0.001 | 83.6 | 0.194 ± 0.002 | 81.2 | 0.164 ± 0.010 |
References
- FAO. Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#data (accessed on 12 June 2021).
- Watson, R.R.; Preedy, V.R.; Zibadi, S. Wheat and Rice in Disease Prevention and Health: Benefits, Risks and Mechanisms of Whole Grains in Health Promotion; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Saini, P.; Kumar, N.; Kumar, S.; Mwaurah, P.W.; Panghal, A.; Attkan, A.K.; Singh, V.K.; Garg, M.K.; Singh, V. Bioactive compounds, nutritional benefits and food applications of colored wheat: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 16, 1–14. [Google Scholar] [CrossRef]
- Navarro, S.; Noyes, R.T. The Mechanics and Physics of Modern Grain Aeration Management; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Magan, N.; Aldred, D.; Mylona, K.; Lambert, R.J.W. Limiting mycotoxins in stored wheat. Food Addit. Contam.-Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 644–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, G.R. The modelling and potential applications of a simple solar regenerated grain cooling device. Postharvest Biol. Technol. 1998, 13, 151–168. [Google Scholar] [CrossRef]
- Maier, D.; Navarro, S. Chilling of grain by refrigerated air. In The Mechanics and Physics of Modern Grain Aeration Management; CRC Press: Boca Raton, FL, USA, 2002; pp. 489–560. [Google Scholar]
- Mühlbauer, W. Handbuch der Getreidetrocknung: Grundlagen und Verfahren; Agrimedia: Clenze, Germany, 2009. [Google Scholar]
- Mühlbauer, W.; Müller, J. Chapter 3.6-Wheat (Triticum L.). In Drying Atlas; Mühlbauer, W., Müller, J., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 109–115. [Google Scholar]
- Ileleji, K.E.; Maier, D.E.; Woloshuk, C.P. Evaluation of different temperature management strategies for suppression of Sitophilus zeamais (Motschulsky) in stored maize. J. Stored Prod. Res. 2007, 43, 480–488. [Google Scholar] [CrossRef]
- Bala, B.K. Drying and Storage of Cereal Grains; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sharp, J.R. A review of low temperature drying simulation models. J. Agric. Eng. Res. 1982, 27, 169–190. [Google Scholar] [CrossRef]
- Nagaya, K.; Li, Y.; Jin, Z.; Fukumuro, M.; Ando, Y.; Akaishi, A. Low-temperature desiccant-based food drying system with airflow and temperature control. J. Food Eng. 2006, 75, 71–77. [Google Scholar] [CrossRef]
- Ondier, G.O.; Siebenmorgen, T.J.; Mauromoustakos, A. Low-temperature, low-relative humidity drying of rough rice. J. Food Eng. 2010, 100, 545–550. [Google Scholar] [CrossRef]
- Venkatachalam, S.K.; Thottipalayam Vellingri, A.; Selvaraj, V. Low-temperature drying characteristics of mint leaves in a continuous-dehumidified air drying system. J. Food Process. Eng. 2020, 43, e13384. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Chen, G. Recent advances of novel thermal combined hot air drying of agricultural crops. Trends Food Sci. Technol. 2016, 57, 132–145. [Google Scholar] [CrossRef] [Green Version]
- El-Sebaii, A.A.; Shalaby, S.M. Solar drying of agricultural products: A review. Renew. Sustain. Energy Rev. 2012, 16, 37–43. [Google Scholar] [CrossRef]
- Bruce, D.M. A model of the effect of heated-air drying on the bread baking quality of wheat. J. Agric. Eng. Res. 1992, 52, 53–76. [Google Scholar] [CrossRef]
- Giner, S.A.; Calvelo, A. Modelling of Wheat Drying in Fluidized Beds. J. Food Sci. 1987, 52, 1358–1363. [Google Scholar] [CrossRef]
- Nellist, M.E. Modelling the performance of a cross-flow grain drier. J. Agric. Eng. Res. 1987, 37, 43–57. [Google Scholar] [CrossRef]
- Mellmann, J.; Richter, I.G.; Maltry, W. Experiments on Hot-Air Drying of Wheat in a Semi-Technical Mixed-Flow Dryer. Dry. Technol. 2007, 25, 1287–1295. [Google Scholar] [CrossRef]
- Lupano, C.; Añón, M. Denaturation of wheat germ proteins during drying. Cereal Chem. 1986, 63, 259–262. [Google Scholar]
- Bhullar, S.; Jenner, C. Differential responses to high temperatures of starch and nitrogen accumulation in the grain of four cultivars of wheat. Funct. Plant Biol. 1985, 12, 363–375. [Google Scholar] [CrossRef]
- Mis, A.; Grundas, S. Influence of the moistening and drying of wheat grain on its hardness. Int. Agrophys. 2004, 18, 47–53. [Google Scholar]
- Glenn, G.M.; Younce, F.L.; Pitts, M.J. Fundamental physical properties characterizing the hardness of wheat endosperm. J. Cereal Sci. 1991, 13, 179–194. [Google Scholar] [CrossRef]
- Cubadda, R.E.; Carcea, M.; Marconi, E.; Trivisonno, M.C. Influence of Gluten Proteins and Drying Temperature on the Cooking Quality of Durum Wheat Pasta. Cereal Chem. 2007, 84, 48–55. [Google Scholar] [CrossRef]
- Dexter, J.E.; Matsuo, R.R.; Morgan, B.C. High Temperature Drying: Effect on Spaghetti Properties. J. Food Sci. 1981, 46, 1741–1746. [Google Scholar] [CrossRef]
- D’Amico, S.; Mäschle, J.; Jekle, M.; Tömösközi, S.; Langó, B.; Schoenlechner, R. Effect of high temperature drying on gluten-free pasta properties. LWT-Food Sci. Technol. 2015, 63, 391–399. [Google Scholar] [CrossRef]
- Gastón, A.a.L.; Abalone, R.M.; Giner, S.A. Wheat drying kinetics. Diffusivities for sphere and ellipsoid by finite elements. J. Food Eng. 2002, 52, 313–322. [Google Scholar] [CrossRef]
- Giner, S.; Mascheroni, R. PH—Postharvest Technology: Diffusive Drying Kinetics in Wheat, Part 2: Applying the Simplified Analytical Solution to Experimental Data. Biosyst. Eng. 2002, 81, 85–97. [Google Scholar] [CrossRef]
- Hemis, M.; Bettahar, A.; Singh, C.B.; Bruneau, D.; Jayas, D.S. An Experimental Study of Wheat Drying in Thin Layer and Mathematical Simulation of a Fixed-Bed Convective Dryer. Dry. Technol. 2009, 27, 1142–1151. [Google Scholar] [CrossRef]
- Mohapatra, D.; Srinivasa Rao, P. A thin layer drying model of parboiled wheat. J. Food Eng. 2005, 66, 513–518. [Google Scholar] [CrossRef]
- Rafiee, S.; Keyhani, A.; Jafari, A. Modeling Effective Moisture Diffusivity of Wheat (Tajan) During Air Drying. Int. J. Food Prop. 2008, 11, 223–232. [Google Scholar] [CrossRef]
- Watson, E.; Bhargava, V. Thin-layer drying studies on wheat. Can. Agric. Eng. 1974, 16, 18–22. [Google Scholar]
- Argyropoulos, D.; Heindl, A.; Müller, J. Assessment of convection, hot-air combined with microwave-vacuum and freeze-drying methods for mushrooms with regard to product quality. Int. J. Food Sci. Technol. 2011, 46, 333–342. [Google Scholar] [CrossRef]
- Munder, S.; Argyropoulos, D.; Müller, J. Acquisition of Sorption and Drying Data with Embedded Devices: Improving Standard Models for High Oleic Sunflower Seeds by Continuous Measurements in Dynamic Systems. Agriculture 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Sinicio, R.; Muir, W.E.; Jayas, D.S.; Cenkowski, S. Thin-layer drying and wetting of wheat. Postharvest Biol. Technol. 1995, 5, 261–275. [Google Scholar] [CrossRef]
- Sokhansanj, S.; Singh, D.; Wasserman, J. Drying Characteristics of Wheat, Barley and Canola Subjected to Repetitive Wetting and Drying Cycles. Trans. ASAE 1984, 27, 903–0906. [Google Scholar] [CrossRef]
- Cao, C.; Yu, W. Thin layer drying studies on wheat. J. Beijing Agric. Eng. Univ. 1987, 7, 47–54. [Google Scholar]
- O’callaghan, J.; Menzies, D.; Bailey, P. Digital simulation of agricultural drier performance. J. Agric. Eng. Res. 1971, 16, 223–244. [Google Scholar] [CrossRef]
- Nishiyama, Y. Grain drying simulation by the sphere drying model. Proceedings of 4th International Drying Symposium, Kyoto, Japan, 9–12 July 1984; pp. 513–519. [Google Scholar]
- Singh, D.; Sokhansanj, S.; Middleton, B. Drying Characteristics of Wheat, Barley and Canola at Low Temperatures; ASAE Paper No. NCR 83207; ASAE: St. Joseph, MI, USA, 1983. [Google Scholar]
- Karaj, S.; Müller, J. Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha curcas L. Ind. Crop. Prod. 2010, 32, 129–138. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Analytical Chemist: Arlington, VA, USA, 1998. [Google Scholar]
- Nimkar, P.M.; Chattopadhyay, P.K. PH—Postharvest Technology: Some Physical Properties of Green Gram. J. Agric. Eng. Res. 2001, 80, 183–189. [Google Scholar] [CrossRef]
- Sacilik, K.; Öztürk, R.; Keskin, R. Some Physical Properties of Hemp Seed. Biosyst. Eng. 2003, 86, 191–198. [Google Scholar] [CrossRef]
- Reyer, S.; Awiszus, S.; Meissner, K.; Müller, J. High precision laboratory dryer for thin layer and bulk drying with adjustable temperature, relative humidity and velocity of the drying air. HardwareX 2020, 8, e00133. [Google Scholar] [CrossRef]
- Udomkun, P.; Argyropoulos, D.; Nagle, M.; Mahayothee, B.; Müller, J. Sorption behaviour of papayas as affected by compositional and structural alterations from osmotic pretreatment and drying. J. Food Eng. 2015, 157, 14–23. [Google Scholar] [CrossRef]
- Lewis, W.K. The Rate of Drying of Solid Materials. J. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Page, G.E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers; Purdue University: West Lafayette, IN, USA, 1949. [Google Scholar]
- Henderson, S.M. Grain drying theory (I) temperature effect on drying coefficient. J. Agric. Eng. Res. 1961, 6, 169–174. [Google Scholar]
- Chandra, P.K.; Singh, R.P. Applied Numerical Methods for Food and Agricultural Engineers; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single-layer drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- Guillard, V.; Bourlieu, C.; Gontard, N. Food Structure and Moisture Transfer: A Modeling Approach; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Erbay, Z.; Icier, F. A review of thin layer drying of foods: Theory, modeling, and experimental results. Crit. Rev. Food Sci. Nutr. 2010, 50, 441–464. [Google Scholar] [CrossRef]
- Ertekin, C.; Firat, M.Z. A comprehensive review of thin-layer drying models used in agricultural products. Crit. Rev. Food Sci. Nutr. 2017, 57, 701–717. [Google Scholar] [CrossRef] [PubMed]
- Udomkun, P.; Argyropoulos, D.; Nagle, M.; Mahayothee, B.; Janjai, S.; Müller, J. Single layer drying kinetics of papaya amidst vertical and horizontal airflow. LWT-Food Sci. Technol. 2015, 64, 67–73. [Google Scholar] [CrossRef]
- Hui, Y.H. Food Drying Science and Technology: Microbiology, Chemistry, Applications; DEStech Publications, Inc.: Lancaster, PA, USA, 2008. [Google Scholar]
- Giner, S.A.; Mascheroni, R.H. PH—Postharvest Technology: Diffusive Drying Kinetics in Wheat, Part 1: Potential for a Simplified Analytical Solution. J. Agric. Eng. Res. 2001, 80, 351–364. [Google Scholar] [CrossRef]
- Sun, D.W.; Woods, J.L. The selection of sorption isotherm equations for wheat based on the fitting of available data. J. Stored Prod. Res. 1994, 30, 27–43. [Google Scholar] [CrossRef]
- Brunauer, S. The Adsorption of Gases and Vapors Vol I—Physical Adsorption; Princeton University Press: Princeton, NJ, USA, 1943. [Google Scholar]
- Jayas, D.; Sokhansanj, S. Thin-layer drying of wheat at low temperatures. Drying 1986, 86, 844–847. [Google Scholar]
- Prakash, B.; Siebenmorgen, T.J. Single-Parameter Thin-Layer Drying Equations for Long-Grain Rice. Trans. ASABE 2018, 61, 733–742. [Google Scholar] [CrossRef]
Model | Expression | Eq. | Expression | Eq. |
---|---|---|---|---|
Newton | (4) | (5) | ||
Page | (6) | (7) | ||
Henderson | (8) | (9) | ||
Ademiluyi | (10) | (11) | ||
Logarithmic | (12) | (13) | ||
Midili | (14) | (15) | ||
Peleg | (16) | (17) | ||
Weibull | (18) | (19) |
Code | Model Parameters, Statistical Indicators | Newton | Page | Henderson | Ademiluyi | Logarithmic | Midili | Peleg | Weibull |
---|---|---|---|---|---|---|---|---|---|
T10/RH40/V015 | k, min−1 | 8.657 × 10−4 | 4.380 × 10−3 | 7.497 × 10−4 | 4.168 × 10−3 | 1.239 × 10−3 | 9.941 × 10−3 | – | – |
n, – | – | 0.757 | – | 0.763 | – | – | – | – | |
A0, – | – | – | 0.922 | 0.993 | 0.724 | 0.949 | 784.2 | 1309 | |
A1, – | – | – | – | – | 0.229 | 8.685 × 10−5 | 1.006 | 0.757 | |
R2, – | 0.954 | 0.998 | 0.988 | 0.998 | 0.994 | 0.994 | 0.994 | 0.998 | |
RMSE, – | 3.581 × 10−2 | 7.833 × 10−3 | 1.819 × 10−2 | 7.846 × 10−3 | 1.277 × 10−2 | 1.348 × 10−2 | 1.361 × 10−2 | 7.833 × 10−3 | |
MAPE, % | 5.3 | 1.2 | 2.2 | 1.2 | 1.8 | 1.8 | 2.1 | 1.2 | |
T20/RH40/V015 | k, min−1 | 1.612 × 10−3 | 5.471 × 10−3 | 1.449 × 10−3 | 5.505 × 10−3 | 1.965 × 10−3 | 1.755 × 10−3 | – | – |
n, – | – | 0.811 | – | 0.810 | – | – | – | – | |
A0, – | – | – | 0.917 | 1.001 | 0.849 | 0.952 | 439.3 | 616.9 | |
A1, – | – | – | – | – | 0.108 | 6.067 × 10−5 | 0.859 | 0.811 | |
R2, – | 0.976 | 0.999 | 0.992 | 0.999 | 0.999 | 0.998 | 0.998 | 0.999 | |
RMSE, – | 3.400 × 10−2 | 7.608 × 10−3 | 1.983 × 10−2 | 7.642 × 10−3 | 8.700 × 10−3 | 9.240 × 10−3 | 9.466 × 10−3 | 7.608 × 10−3 | |
MAPE, % | 9.0 | 2.1 | 5.1 | 2.1 | 1.6 | 1.6 | 2.2 | 2.1 | |
T30/RH40/V015 | k, min−1 | 2.323 × 10−3 | 9.502 × 10−3 | 2.047 × 10−3 | 1.246 × 10−2 | 2.945 × 10−3 | 2.571 × 10−3 | – | – |
n, – | – | 0.774 | – | 0.736 | – | – | – | – | |
A0, – | – | – | 0.896 | 1.040 | 0.864 | 0.951 | 274.4 | 411.2 | |
A1, – | – | – | – | – | 0.097 | 6.707 × 10−5 | 0.883 | 0.774 | |
R2, – | 0.964 | 0.997 | 0.982 | 0.998 | 0.998 | 0.997 | 0.999 | 0.997 | |
RMSE, – | 4.286 × 10−2 | 1.193 × 10−2 | 3.078 × 10−2 | 1.039 × 10−2 | 9.684 × 10−3 | 1.230 × 10−3 | 7.614 × 10−3 | 1.193 × 10−2 | |
MAPE, % | 18.7 | 4.6 | 12.5 | 3.8 | 3.1 | 4.1 | 3.0 | 4.6 | |
T40/RH40/V015 | k, min−1 | 5.037 × 10−3 | 1.566 × 10−2 | 4.538 × 10−3 | 1.879 × 10−2 | 5.779 × 10−3 | 5.243 × 10−3 | – | – |
n, – | – | 0.794 | – | 0.766 | – | – | – | – | |
A0, – | – | – | 0.911 | 1.033 | 0.909 | 0.952 | 123.2 | 188.2 | |
A1, – | – | – | – | – | 0.055 | 6.151 × 10−5 | 0.898 | 0.794 | |
R2, – | 0.975 | 0.995 | 0.984 | 0.996 | 0.999 | 0.998 | 0.994 | 0.995 | |
RMSE, – | 3.562 × 10−2 | 1.559 × 10−2 | 2.911 × 10−2 | 1.494 × 10−2 | 6.810 × 10−3 | 1.000 × 10−2 | 1.736 × 10−2 | 1.559 × 10−2 | |
MAPE, % | 34.0 | 13.9 | 27.4 | 6.4 | 3.6 | 11.3 | 13.1 | 13.9 | |
T50/RH40/V015 | k, min−1 | 1.070 × 10−2 | 2.193 × 10−2 | 1.012 × 10−3 | 2.424 × 10−2 | 1.151 × 10−2 | 1.081 × 10−2 | – | – |
n, – | – | 0.849 | – | 0.832 | – | – | – | – | |
A0, – | – | – | 0.950 | 1.019 | 0.947 | 0.969 | 58.3 | 90.11 | |
A1, – | – | – | – | – | 0.030 | 5.744 × 10−5 | 0.898 | 0.849 | |
R2, – | 0.989 | 0.997 | 0.992 | 0.997 | 0.992 | 0.998 | 0.991 | 0.997 | |
RMSE, – | 2.318 × 10−2 | 1.254 × 10−2 | 2.075 × 10−2 | 1.228 × 10−2 | 6.450 × 10−3 | 9.260 × 10−3 | 2.247 × 10−2 | 1.254 × 10−2 | |
MAPE, % | 37.1 | 18.2 | 32.6 | 17.3 | 6.6 | 9.1 | 22.1 | 18.2 | |
T30/RH20/V015 | k, min−1 | 2.600 × 10−3 | 7.901 × 10−3 | 2.350 × 10−3 | 8.847 × 10−3 | 2.873 × 10−3 | 2.654 × 10−3 | – | – |
n, – | – | 0.819 | – | 0.803 | – | – | – | – | |
A0, – | – | – | 0.912 | 1.016 | 0.895 | 0.942 | 262.8 | 368.4 | |
A1, – | – | – | – | – | 0.055 | 3.659 × 10−5 | 0.857 | 0.819 | |
R2, – | 0.981 | 0.999 | 0.992 | 0.999 | 0.997 | 0.997 | 0.999 | 0.999 | |
RMSE, – | 3.214 × 10−2 | 5.510 × 10−2 | 2.131 × 10−2 | 5.002 × 10−2 | 1.194 × 10−3 | 1.340 × 10−2 | 5.514 × 10−2 | 5.550 × 10−3 | |
MAPE, % | 17.4 | 2.6 | 10.5 | 2.5 | 4.9 | 5.3 | 3.4 | 2.6 | |
T30/RH60/V015 | k, min−1 | 2.072 × 10−3 | 9.077 × 10−3 | 1.814 × 10−3 | 1.156 × 10−2 | 2.755 × 10−3 | 2.354 × 10−3 | – | – |
n, – | – | 0.764 | – | 0.731 | – | – | – | – | |
A0, – | – | – | 0.895 | 1.033 | 0.835 | 0.950 | 309.2 | 469.6 | |
A1, – | – | – | – | – | 0.125 | 8.626 × 10−5 | 0.903 | 0.764 | |
R2, – | 0.959 | 0.998 | 0.982 | 0.999 | 0.998 | 0.997 | 0.999 | 0.998 | |
RMSE, – | 4.441 × 10−2 | 9.974 × 10−3 | 2.985 × 10−2 | 8.636 × 10−3 | 1.054 × 10−2 | 1.275 × 10−2 | 5.760 × 10−3 | 9.974 × 10−3 | |
MAPE, % | 14.1 | 2.8 | 8.5 | 2.3 | 2.6 | 3.1 | 1.7 | 2.8 | |
T30/RH40/V05 | k, min−1 | 2.392 × 10−3 | 1.201 × 10−3 | 2.054 × 10−3 | 1.675 × 10−2 | 3.182 × 10−3 | 2.696 × 10−3 | – | – |
n, – | – | 0.740 | – | 0.694 | – | – | – | – | |
A0, – | – | – | 0.877 | 1.054 | 0.849 | 0.944 | 251.1 | 395.0 | |
A1, – | – | – | – | – | 0.110 | 7.738 × 10−5 | 0.918 | 0.740 | |
R2, – | 0.948 | 0.996 | 0.973 | 0.997 | 0.998 | 0.996 | 0.999 | 0.996 | |
RMSE, – | 5.021 × 10−2 | 1.418 × 10−2 | 3.643 × 10−2 | 1.197 × 10−2 | 1.111 × 10−2 | 1.497 × 10−2 | 6.566 × 10−3 | 1.418 × 10−2 | |
MAPE, % | 22.2 | 5.4 | 14.7 | 4.4 | 3.8 | 5.3 | 2.4 | 5.4 | |
T30/RH40/V1 | k, min−1 | 2.656 × 10−3 | 1.237 × 10−3 | 2.292 × 10−3 | 1.682 × 10−2 | 3.367 × 10−3 | 2.893 × 10−3 | – | – |
n, – | – | 0.748 | – | 0.706 | – | – | – | – | |
A0, – | – | – | 0.880 | 1.052 | 0.864 | 0.940 | 228.7 | 353.9 | |
A1, – | – | – | – | – | 0.093 | 6.559 × 10−5 | 0.909 | 0.748 | |
R2, – | 0.954 | 0.996 | 0.975 | 0.997 | 0.996 | 0.994 | 0.999 | 0.996 | |
RMSE, – | 4.784 × 10−2 | 1.406 × 10−2 | 3.537 × 10−2 | 1.209 × 10−2 | 1.416 × 10−2 | 1.814 × 10−2 | 7.081 × 10−3 | 1.406 × 10−2 | |
MAPE, % | 25.0 | 5.6 | 16.8 | 4.2 | 7.1 | 8.6 | 2.2 | 5.3 |
Drying Conditions | D, m2s−1 | R2, – | RMSE, – | MAPE, % |
---|---|---|---|---|
T10/RH40/V015 | 2.474 × 10−12 | 0.941 | 3.281 × 10−2 | 4.5 |
T20/RH40/V015 | 5.811 × 10−12 | 0.957 | 4.403 × 10−2 | 9.4 |
T30/RH40/V015 | 8.963 × 10−12 | 0.956 | 4.501 × 10−2 | 8.2 |
T40/RH40/V015 | 1.917 × 10−11 | 0.946 | 5.213 × 10−2 | 10.7 |
T50/RH40/V015 | 3.921 × 10−11 | 0.947 | 5.595 × 10−2 | 10.8 |
T30/RH20/V015 | 9.822 × 10−12 | 0.956 | 4.570 × 10−2 | 8.6 |
T30/RH60/V015 | 7.843 × 10−12 | 0.964 | 4.005 × 10−2 | 7.0 |
T30/RH40/V05 | 9.494 × 10−12 | 0.962 | 4.186 × 10−2 | 7.4 |
T30/RH40/V1 | 1.061 × 10−11 | 0.959 | 4.451 × 10−2 | 7.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramaj, I.; Schock, S.; Müller, J. Drying Kinetics of Wheat (Triticum aestivum L., cv. ‘Pionier’) during Thin-Layer Drying at Low Temperatures. Appl. Sci. 2021, 11, 9557. https://doi.org/10.3390/app11209557
Ramaj I, Schock S, Müller J. Drying Kinetics of Wheat (Triticum aestivum L., cv. ‘Pionier’) during Thin-Layer Drying at Low Temperatures. Applied Sciences. 2021; 11(20):9557. https://doi.org/10.3390/app11209557
Chicago/Turabian StyleRamaj, Iris, Steffen Schock, and Joachim Müller. 2021. "Drying Kinetics of Wheat (Triticum aestivum L., cv. ‘Pionier’) during Thin-Layer Drying at Low Temperatures" Applied Sciences 11, no. 20: 9557. https://doi.org/10.3390/app11209557
APA StyleRamaj, I., Schock, S., & Müller, J. (2021). Drying Kinetics of Wheat (Triticum aestivum L., cv. ‘Pionier’) during Thin-Layer Drying at Low Temperatures. Applied Sciences, 11(20), 9557. https://doi.org/10.3390/app11209557