Risk Assessment and Source Apportionment of Heavy Metals in Soils from Handan City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Soil Sampling
2.2. Chemical Analysis
2.3. Evaluation Approach of Heavy Metals
2.3.1. Pollution Evaluation
2.3.2. Ecological Risk Evaluation Approach
2.3.3. Health Risk Evaluation Approach
2.4. Source Apportionment Approaches
2.4.1. Source Identification
2.4.2. PMF Model
2.5. Spatial Analysis Method
3. Results and Discussion
3.1. Heavy Metals Content in Soil
3.2. Spatial Distribution of Soil Heavy Metals
3.3. Risk Assessment for Heavy Metals
3.3.1. Pollution Index and Geoaccumulation Index
3.3.2. Ecological Risk
3.3.3. Nemerow Integrated Pollution Index and Pollution Load Index
3.3.4. Health Risk Assessment
3.4. Source Apportionment of Heavy Metals
3.4.1. Correlation Analysis
3.4.2. Cluster Analysis
3.4.3. Source Identification by PCA
3.4.4. Source Apportionment by PMF Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef]
- Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Ma, J.; Wu, X.; Ju, T.; Lin, X.; Zhang, Y.; Li, X.; Gong, Y.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Iordache, M.; Iordache, A.M.; Sandru, C.; Voica, C.; Zgavarogea, R.; Miricioiu, M.G.; Roxana, E.I. Assessment of heavy metals pollution in sediments from reservoirs of the olt river as tool for environmental risk management. Rev. Chim. 2019, 12, 4153–4162. [Google Scholar] [CrossRef]
- Zhang, J.; Hua, P.; Krebs, P. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. Environ. Pollut. 2017, 228, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-H.; Cai, L.-M.; Wen, H.-H.; Hu, G.-C.; Chen, L.-G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.J.; Liu, Y.; Liu, Z.; Zhang, A.N. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotoxicol. Environ. Saf. 2018, 164, 261–269. [Google Scholar] [CrossRef]
- Wang, X.; Dan, Z.; Cui, X.; Zhang, R.; Zhou, S.; Wenga, T.; Yan, B.; Chen, G.; Zhang, Q.; Zhong, L. Contamination, ecological and health risks of trace elements in soil of landfill and geothermal sites in Tibet. Sci. Total Environ. 2020, 715, 136639. [Google Scholar] [CrossRef]
- Bing, H.; Zhou, J.; Wu, Y.; Wang, X.; Sun, H.; Li, R. Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environ. Pollut. 2016, 214, 485–496. [Google Scholar] [CrossRef]
- Parra, S.; Bravo, M.A.; Quiroz, W.; Moreno, T.; Karanasiou, A.; Font, O.; Vidal, V.; Cereceda-Balic, F. Source apportionment for contaminated soils using multivariate statistical methods. Chemom. Intell. Lab. Syst. 2014, 138, 127–132. [Google Scholar] [CrossRef]
- Qu, M.; Wang, Y.; Huang, B.; Zhao, Y. Source apportionment of soil heavy metals using robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR) receptor model. Sci. Total Environ. 2018, 626, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cai, L.-M.; Wen, H.-H.; Luo, J.; Wang, Q.-S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Jia, X.; Yang, X.; Li, Y.; An, S. A method of identifying priority spatial patterns for the management of potential ecological risks posed by heavy metals. J. Hazard. Mater. 2012, 237–238, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ji, H.; Shi, C.; Gao, Y.; Zhang, Y.; Xu, X.; Ding, H.; Tang, L.; Xing, Y. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere 2017, 172, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Shi, G.; Liu, G.; Xu, J.; Tian, Y.; Zhang, Y.; Feng, Y.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ. Pollut. 2017, 221, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.T.; Lin, C.; Shern, C.-C.; Yeh, G.; Le, V.G.; Tran, H.T. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecol. Indic. 2017, 82, 32–42. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.-P.; Zheng, Y.; Ma, Q.; Jiang, Y. Quantifying the heavy metal risks from anthropogenic contributions in Sichuan panda (Ailuropoda melanoleuca melanoleuca) habitat. Sci. Total Environ. 2020, 745, 140941. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef]
- Yang, S.; He, M.; Zhi, Y.; Chang, S.X.; Gu, B.; Liu, X.; Xu, J. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environ. Int. 2019, 133, 105239. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Fudała, J.; Strzelecka-Jastrząb, E.; Hlawiczka, S.; Panasiuk, D.; Nitter, S.; Pregger, T.; Pfeiffer, H.; Friedrich, R. Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos. Environ. 2007, 41, 8557–8566. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Liang, S.Y.; Cui, J.L.; Bi, X.Y.; Luo, X.S.; Li, X. Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Sci. Total Environ. 2019, 695, 133596. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Alam, M.K.; Islam, S.; Diganta, M.T.M.; Akbor, M.A.; Bithi, U.H.; Chowdhury, A.I.; Ullah, A.K.M.A. Apportionment of some chemical elements in soils around the coal mining area in northern Bangladesh and associated health risk assessment. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100366. [Google Scholar] [CrossRef]
- Shi, D.; Lu, X. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Sci. Total Environ. 2018, 636, 1211–1218. [Google Scholar] [CrossRef]
- Watson, J.; Robinson, N.; Chow, J.; Henry, R.; Kim, B.; Pace, T.; Meyer, E.; Nguyen, Q. The USEPA/DRI chemical mass balance receptor model, CMB 7.0. Environ. Softw. 1990, 5, 38–49. [Google Scholar] [CrossRef]
- Deng, M.; Zhu, Y.; Shao, K.; Zhang, Q.; Ye, G.; Shen, J. Metals source apportionment in farmland soil and the prediction of metal transfer in the soil-rice-human chain. J. Environ. Manag. 2020, 260, 110092. [Google Scholar] [CrossRef]
- Liao, S.; Jin, G.; Khan, M.A.; Zhu, Y.; Duan, L.; Luo, W.; Jia, J.; Zhong, B.; Ma, J.; Ye, Z.; et al. The quantitative source apportionment of heavy metals in peri-urban agricultural soils with UNMIX and input fluxes analysis. Environ. Technol. Innov. 2021, 21, 101232. [Google Scholar] [CrossRef]
- Mokhtarzadeh, Z.; Keshavarzi, B.; Moore, F.; Marsan, F.A.; Padoan, E. Potentially toxic elements in the Middle East oldest oil refinery zone soils: Source apportionment, speciation, bioaccessibility and human health risk assessment. Environ. Sci. Pollut. Res. 2020, 27, 40573–40591. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, R.; Gan, Y.; Cai, L.; Freidenreich, A.; Wang, K.; Guo, T.; Wang, H. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci. Total Environ. 2019, 651, 3127–3138. [Google Scholar] [CrossRef]
- Dong, J.; Quan, Q.; Zhao, D.; Li, C.; Zhang, C.; Chen, H.; Fang, J.; Wang, L.; Liu, J. A combined method for the source apportionment of sediment organic carbon in rivers. Sci. Total Environ. 2021, 752, 141840. [Google Scholar] [CrossRef]
- Jin, Y.; O’Connor, D.; Ok, Y.S.; Tsang, D.; Liu, A.; Hou, D. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xia, D.; Yu, Y.; Jia, J.; Xu, S. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China. Environ. Pollut. 2014, 184, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chen, H.; Song, L.; Yao, Z.; Meng, F.; Teng, Y. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Sci. Total Environ. 2019, 694, 133819. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.; Jain, M.K.; Masto, R.E. Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: The case study of eastern India. Environ. Sci. Pollut. Res. 2020, 27, 10822–10834. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Zhang, Y.; Yuan, J.; Peng, Y.; Li, X.; Shi, Y.; He, K.; Zhang, Q. Risk assessment, spatial distribution, and source apportionment of heavy metals in Chinese surface soils from a typically tobacco cultivated area. Environ. Sci. Pollut. Res. 2018, 25, 16852–16863. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre (CNEMC). Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Saghatelyan, A. Origin identification and potential ecological risk assessment of potentially toxic inorganic elements in the topsoil of the city of Yerevan, Armenia. J. Geochem. Explor. 2016, 167, 1–11. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.; Wang, B.; Qiao, Y.; Xiang, J.; Hu, S.; Yao, H. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components. Environ. Sci. Pollut. Res. 2015, 23, 253–265. [Google Scholar] [CrossRef]
- Xue, J.-L.; Zhi, Y.-Y.; Yang, L.-P.; Shi, J.-C.; Zeng, L.-Z.; Wu, L.-S. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China). Environ. Sci. Pollut. Res. 2014, 21, 7698–7707. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wu, J.; Wang, J. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 2016, 144, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yang, Z.; Li, L.; Wang, L. Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China. Environ. Sci. Pollut. Res. 2016, 23, 17058–17066. [Google Scholar] [CrossRef]
- Mohanty, A.F.; Farin, F.M.; Bammler, T.K.; MacDonald, J.W.; Afsharinejad, Z.; Burbacher, T.M.; Siscovick, D.S.; Williams, M.A.; Enquobahrie, D.A. Infant sex-specific placental cadmium and DNA methylation associations. Environ. Res. 2015, 138, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhu, H.; Liu, X.; Liu, Z. Oxidative stress and Ca2+ signals involved on cadmium-induced apoptosis in rat hepatocyte. Biol. Trace Elem. Res. 2014, 161, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Lu, X.; Lei, K. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Sci. Total Environ. 2017, 609, 1361–1369. [Google Scholar] [CrossRef]
- Pan, L.-B.; Ma, J.; Wang, X.-L.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Wang, Y.; Zhao, N.; Yu, R.; Xu, G.; Yu, Y. Spatial distribution and risk assessment of heavy metals in paddy soils of yongshuyu irrigation area from Songhua River Basin, Northeast China. Chin. Geogr. Sci. 2018, 28, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ. Pollut. 2006, 142, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Gao, Q.; Wen, X.; Yang, M.; Chen, H.; Wu, Z.; Lin, X. Multivariate statistical analysis of heavy metals in foliage dust near pedestrian bridges in Guangzhou, South China in 2009. Environ. Earth Sci. 2013, 70, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, X.; Yan, X.; Tu, C.; Yu, Z. Environmental risks for application of iron and steel slags in soils in China: A review. Pedosphere 2021, 31, 28–42. [Google Scholar] [CrossRef]
- Cai, A.; Zhang, H.; Wang, L.; Wang, Q.; Wu, X. Source apportionment and health risk assessment of heavy metals in PM2.5 in Handan: A typical heavily polluted city in north China. Atmosphere 2021, 12, 1232. [Google Scholar] [CrossRef]
Cr | Mn | Ni | Cu | Zn | Cd | Pb | |
---|---|---|---|---|---|---|---|
Maximum (mg·kg−1) | 471.39 | 1149.65 | 151.29 | 225.95 | 346.83 | 2.52 | 110.68 |
Median (mg·kg−1) | 77.89 | 571.20 | 40.64 | 29.15 | 135.39 | 0.82 | 30.27 |
Minimum (mg·kg−1) | 9.41 | 458.60 | 12.87 | 7.35 | 73.20 | 0.12 | 2.21 |
Mean (mg·kg−1) | 94.40 | 588.25 | 47.47 | 43.16 | 158.32 | 0.92 | 33.27 |
Standard deviation (mg·kg−1) | 78.35 | 100.57 | 29.19 | 42.22 | 69.15 | 0.53 | 18.70 |
Background of Hebei (mg·kg−1) | 68.3 | 608 | 30.8 | 21.8 | 78.4 | 0.094 | 21.5 |
Coefficient of variation (CV) | 0.83 | 0.17 | 0.61 | 0.98 | 0.44 | 0.58 | 0.56 |
Skewness | 2.785 | 3.300 | 2.098 | 3.021 | 1.013 | 1.273 | 1.209 |
Kurtosis | 9.874 | 15.723 | 4.584 | 9.794 | 0.231 | 1.584 | 3.525 |
Kolmogorov–Smirnov test (P) | 0.004 | 0.012 | 0.003 | 0.000 | 0.142 | 0.120 | 0.156 |
Non-Carcinogenic Risks | Carcinogenic Risks | ||||||||
---|---|---|---|---|---|---|---|---|---|
HQing | HQdermal | HQinh | HI | CRing | CRdermal | CRinh | CR | ||
Cd | Adult | 1.56 × 103 | 5.53 × 104 | 1.66 × 105 | 2.13 × 103 | 3.26 × 106 | - | 3.59 × 101 | 3.26 × 106 |
Children | 1.11 × 102 | 2.72 × 103 | 3.07 × 105 | 1.39 × 102 | 5.82 × 106 | - | 1.76 × 101 | 5.82 × 106 | |
Cr | Adult | 5.31 × 102 | 9.44 × 103 | 5.94 × 104 | 6.32 × 102 | 2.73 × 105 | 3.88 × 106 | 2.45 × 107 | 3.14 × 105 |
Children | 3.80 × 101 | 4.65 × 102 | 1.10 × 103 | 4.27 × 101 | 4.88 × 105 | 4.78 × 106 | 1.20 × 107 | 5.37 × 105 | |
Cu | Adult | 1.82 × 103 | 2.16 × 105 | 1.93 × 107 | 1.84 × 103 | - | - | - | |
Children | 1.30 × 102 | 1.06 × 104 | 3.57 × 107 | 1.31 × 102 | - | - | - | ||
Mn | Adult | 2.16 × 102 | 1.92 × 103 | 7.40 × 103 | 3.09 × 102 | - | - | - | |
Children | 1.54 × 101 | 9.44 × 103 | 1.37 × 102 | 1.77 × 101 | - | - | - | ||
Ni | Adult | 4.01 × 103 | 5.27 × 105 | 9.49 × 105 | 4.15 × 103 | 4.67 × 105 | 4.15 × 106 | 2.46 × 109 | 5.09 × 105 |
Children | 2.86 × 102 | 2.60 × 104 | 1.75 × 104 | 2.91 × 102 | 8.34 × 105 | 5.11 × 106 | 1.20 × 109 | 8.85 × 105 | |
Pb | Adult | 1.60 × 102 | 3.80 × 104 | 1.70 × 106 | 1.64 × 102 | 1.64 × 107 | - | - | 1.64 × 107 |
Children | 1.15 × 101 | 1.87 × 103 | 3.14 × 106 | 1.17 × 101 | 2.92 × 107 | - | - | 2.92 × 107 | |
Zn | Adult | 8.91 × 104 | 1.58 × 105 | 9.50 × 108 | 9.07 × 104 | - | - | - | |
Children | 6.37 × 103 | 7.79 × 105 | 1.76 × 107 | 6.44 × 103 | - | - | - |
Cr | Mn | Ni | Cu | Zn | Cd | Pb | |
---|---|---|---|---|---|---|---|
Cr | 1 | ||||||
Mn | −0.054 | 1 | |||||
Ni | 0.634 ** | −0.158 | 1 | ||||
Cu | 0.205 | 0.063 | 0.189 | 1 | |||
Zn | 0.022 | 0.284 * | 0.101 | 0.467 ** | 1 | ||
Cd | −0.152 | 0.362 ** | −0.135 | 0.363 ** | 0.547 ** | 1 | |
Pb | 0.027 | 0.284 * | 0.119 | 0.623 ** | 0.513 ** | 0.608 ** | 1 |
Element | Factor Load after Rotation | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Cu | 0.853 | −0.084 | 0.309 |
Pb | 0.853 | 0.326 | −0.047 |
Cd | 0.596 | 0.564 | −0.152 |
Mn | 0.007 | 0.839 | −0.069 |
Zn | 0.231 | 0.831 | 0.127 |
Cr | 0.113 | −0.011 | 0.910 |
Ni | 0.012 | 0.008 | 0.894 |
Eigenvalues | 1.878 | 1.826 | 1.769 |
% of variance | 26.830 | 26.090 | 25.276 |
Cumulative% | 26.830 | 52.920 | 78.196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Cai, A.; Wang, X.; Wang, L.; Wang, Q.; Wu, X.; Ma, Y. Risk Assessment and Source Apportionment of Heavy Metals in Soils from Handan City. Appl. Sci. 2021, 11, 9615. https://doi.org/10.3390/app11209615
Zhang H, Cai A, Wang X, Wang L, Wang Q, Wu X, Ma Y. Risk Assessment and Source Apportionment of Heavy Metals in Soils from Handan City. Applied Sciences. 2021; 11(20):9615. https://doi.org/10.3390/app11209615
Chicago/Turabian StyleZhang, Haixia, Angzu Cai, Xiaojian Wang, Litao Wang, Qing Wang, Xiaoqi Wu, and Yingqun Ma. 2021. "Risk Assessment and Source Apportionment of Heavy Metals in Soils from Handan City" Applied Sciences 11, no. 20: 9615. https://doi.org/10.3390/app11209615
APA StyleZhang, H., Cai, A., Wang, X., Wang, L., Wang, Q., Wu, X., & Ma, Y. (2021). Risk Assessment and Source Apportionment of Heavy Metals in Soils from Handan City. Applied Sciences, 11(20), 9615. https://doi.org/10.3390/app11209615