Nanomaterials for Chronic Kidney Disease Detection
Abstract
:1. Introduction
2. Application of NPs in the Diagnosis of CKD
2.1. Detection of Kidney Injury Biomarkers
2.2. Kidney Imaging Method Using Fluorescence Nanomaterials
2.3. Magnetic Resonance Imaging (MRI) Coupled with Nanomaterials
3. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, S.; Grams, M.E. Epidemiology research to foster improvement in chronic kidney disease care. Kidney Int. 2020, 97, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.; Albertus, P.; Ayanian, J.; Balkrishnan, R.; Bragg-Gresham, J.; Cao, J.; Chen, J.L. US renal data system 2016 annual data report: Epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 2017, 69, A7–A8. [Google Scholar] [CrossRef]
- Levin, A.; Bilous, R.; Coresh, J. Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. 2013, 3, 19–62. [Google Scholar]
- Mula-Abed, W.-A.S.; Al Rasadi, K.; Al-Riyami, D. Estimated glomerular filtration rate (eGFR): A serum creatinine-based test for the detection of chronic kidney disease and its impact on clinical practice. Oman Med. J. 2012, 27, 108. [Google Scholar] [CrossRef] [PubMed]
- Silveiro, S.P.; Araújo, G.N.; Ferreira, M.N.; Souza, F.D.; Yamaguchi, H.M.; Camargo, E.G.J.D.C. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation pronouncedly underestimates glomerular filtration rate in type 2 diabetes. Diabetes Care 2011, 34, 2353–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adibkia, K.; Yaqoubi, S.; Dizaj, S.M. Pharmaceutical and Medical Applications of Nanofibers. In Novel Approaches for Drug Delivery; IGI Global: Hershey, Pennsylvania, 2017; pp. 338–363. [Google Scholar]
- Dizaj, S.; Adibkia, K. A Short Overview on the Nanoparticle-based smart Drug Delivery Systems. J. Pharm. Pharm. 2015, 2, 1–2. [Google Scholar]
- Turksoy, V.A. NANOSOLUTIONS project; a safety classification model for engineered nanomaterials. J. Adv. Chem. Pharm. Mater. (JACPM) 2020, 3, 260–262. [Google Scholar]
- Dizaj, S.M. Can nanotechnology present new strategies to overcome COVID-19? J. Adv. Chem. Pharm. Mater. (JACPM) 2020, 3, 258–259. [Google Scholar]
- Kavetskyy, T. The recent reports on ion implantation technique to prepare nanoporous materials. J. Adv. Chem. Pharm. Mater. (JACPM) 2020, 3, 235–237. [Google Scholar]
- Nagraik, R.; Sharma, A.; Kumar, D.; Mukherjee, S.; Sen, F.; Kumar, A.P.J.S.I. Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review. Sen. Int. 2021, 2, 100089. [Google Scholar] [CrossRef]
- Ahmadian, E.; Dizaj, S.M.; Sharifi, S.; Shahi, S.; Khalilov, R.; Eftekhari, A.; Hasanzadeh, M. The potential of nanomaterials in theranostics of oral squamous cell carcinoma: Recent progress. Trac Trends Anal. Chem. 2019, 116, 167–176. [Google Scholar] [CrossRef]
- Liu, Y.; Miyoshi, H.; Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 2007, 120, 2527–2537. [Google Scholar] [CrossRef]
- Maleki Dizaj, S.; Sharifi, S.; Ahmadian, E.; Eftekhari, A.; Adibkia, K.; Lotfipour, F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv. 2019, 16, 331–345. [Google Scholar] [CrossRef]
- Ma, Y.; Cai, F.; Li, Y.; Chen, J.; Han, F.; Lin, W. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioact. Mater. 2020, 5, 732–743. [Google Scholar] [CrossRef]
- Brede, C.; Labhasetwar, V. Applications of nanoparticles in the detection and treatment of kidney diseases. Adv. Chronic Kidney Dis. 2013, 20, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Haick, H.; Hakim, M.; Patrascu, M.; Levenberg, C.; Shehada, N.; Nakhoul, F.; Abassi, Z. Sniffing chronic renal failure in rat model by an array of random networks of single-walled carbon nanotubes. ACS Nano 2009, 3, 1258–1266. [Google Scholar] [CrossRef]
- Marom, O.; Nakhoul, F.; Tisch, U.; Shiban, A.; Abassi, Z.; Haick, H.J.N. Gold nanoparticle sensors for detecting chronic kidney disease and disease progression. Nanomedicine 2012, 7, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Stamopoulos, D.; Benaki, D.; Bouziotis, P.; Zirogiannis, P.J.N. In vitro utilization of ferromagnetic nanoparticles in hemodialysis therapy. Nanotechnology 2007, 18, 495102. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.J.; Zuckerman, J.E.; Webster, P.; Davis, M.E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl. Acad. Sci. USA 2011, 108, 6656–6661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serkova, N.J.; Renner, B.; Larsen, B.A.; Stoldt, C.R.; Hasebroock, K.M.; Bradshaw-Pierce, E.L.; Holers, V.M.; Thurman, J.M. Renal inflammation: Targeted iron oxide nanoparticles for molecular MR imaging in mice. Radiology 2010, 255, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Hultman, K.L.; Raffo, A.J.; Grzenda, A.L.; Harris, P.E.; Brown, T.R.; O’Brien, S. Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. Acs Nano 2008, 2, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Radović, N.; Čuzić, S.; Knotek, M. Effect of unilateral ureteral obstruction and anti-angiotensin II treatment on renal tubule and interstitial cell apoptosis in rats. Croat. Med. J. 2008, 49, 600–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akers, W.J.; Zhang, Z.; Berezin, M.; Ye, Y.; Agee, A.; Guo, K.; Fuhrhop, R.W.; Wickline, S.A.; Lanza, G.M.; Achilefu, S. Targeting of ανβ3-integrins expressed on tumor tissue and neovasculature using fluorescent small molecules and nanoparticles. Nanomedicine 2010, 5, 715–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simón-Yarza, T.; Tamayo, E.; Benavides, C.; Lana, H.; Formiga, F.R.; Grama, C.N.; Ortiz-de-Solorzano, C.; Kumar, M.R.; Prosper, F.; Blanco-Prieto, M.J. Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia. Int. J. Pharm. 2013, 454, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.-K.; Hu, X.; Kobayashi, H.; Lizak, M.; Miyaji, T.; Koretsky, A.; Star, R.A. Detection of inflammation following renal ischemia by magnetic resonance imaging. Kidney Int. 2003, 64, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Carel, R.; Silverberg, D.; Kaminsky, R.; Aviram, A. Routine urinalysis (dipstick) findings in mass screening of healthy adults. Clin. Chem. 1987, 33, 2106–2108. [Google Scholar] [CrossRef]
- Eftekhari, A.; Ahmadian, E.; Khalilov, R. The main biomarkers for drug-induced nephrotoxicity; a sight on clinical studies. J. Adv. Chem. Pharm. Mater. (JACPM) 2020, 3, 244–247. [Google Scholar]
- Reichel, H.; Zee, J.; Tu, C.; Young, E.; Pisoni, R.L.; Stengel, B.; Duttlinger, J.; Lonnemann, G.; Robinson, B.M.; Pecoits-Filho, R. Chronic kidney disease progression and mortality risk profiles in Germany: Results from the Chronic Kidney Disease Outcomes and Practice Patterns Study. Nephrol. Dial. Transplant. 2020, 35, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Keane, W.F.; Eknoyan, G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): A position paper of the National Kidney Foundation. Am. J. Kidney Dis. 1999, 33, 1004–1010. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A. Review of SERS substrates for chemical sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNay, G.; Eustace, D.; Smith, W.E.; Faulds, K.; Graham, D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications. Appl. Spectrosc. 2011, 65, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Stefancu, A.; Moisoiu, V.; Bocsa, C.; Bálint, Z.; Cosma, D.-T.; Veresiu, I.A.; Chiş, V.; Leopold, N.; Elec, F. SERS-based quantification of albuminuria in the normal-to-mildly increased range. Analyst 2018, 143, 5372–5379. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.O.; Zhu, P.-Y.; Wang, C.-C.; Du, Y.-C.; Chuang, C.-H. Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care. Biosens. Bioelectron. 2019, 126, 572–580. [Google Scholar] [CrossRef]
- Peralta, C.A.; Shlipak, M.G.; Judd, S.; Cushman, M.; McClellan, W.; Zakai, N.A.; Safford, M.M.; Zhang, X.; Muntner, P.; Warnock, D.J.J. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. Jama 2011, 305, 1545–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fani, M.; Maecke, H.; Okarvi, S.J.T. Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics 2012, 2, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapira, S.; Fokra, A.; Arber, N.; Kraus, S. Peptides for diagnosis and treatment of colorectal cancer. Curr. Med. Chem. 2014, 21, 2410–2416. [Google Scholar] [CrossRef]
- Landon, L.A.; Deutscher, S. Combinatorial discovery of tumor targeting peptides using phage display. J. Cell. Biochem. 2003, 90, 509–517. [Google Scholar] [CrossRef]
- Feng, S.; Shi, R.; Xu, P.; Bhamore, J.R.; Bal, J.; Baek, S.H.; Park, C.Y.; Park, J.P.; Park, T. Colorimetric detection of creatinine using its specific binding peptides and gold nanoparticles. New J. Chem. 2020, 44, 15828–15835. [Google Scholar] [CrossRef]
- Alter, M.L.; Kretschmer, A.; Von Websky, K.; Tsuprykov, G.; Reichetzeder, C.; Simon, A.; Stasch, J.-P.; Hocher, B. Early urinary and plasma biomarkers for experimental diabetic nephropathy. Clin. Lab. 2012, 58, 659. [Google Scholar]
- Yang, H.; Wang, H.; Xiong, C.; Chai, Y.; Yuan, R. Highly sensitive electrochemiluminescence immunosensor based on ABEI/H2O2 system with PFO dots as enhancer for detection of kidney injury molecule-1. Biosens. Bioelectron. 2018, 116, 16–22. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, Y.; Zhuo, Y.; Chai, Y.; Yuan, R. Sensitive electrochemiluminescence immunosensor for detection of N-acetyl-β-d-glucosaminidase based on a “light-switch” molecule combined with DNA dendrimer. Anal. Chem. 2016, 88, 5797–5803. [Google Scholar] [CrossRef]
- Lopes, P.; Costa-Rama, E.; Beirão, I.; Nouws, H.P.; Santos-Silva, A.; Delerue-Matos, C. Disposable electrochemical immunosensor for analysis of cystatin C, a CKD biomarker. Talanta 2019, 201, 211–216. [Google Scholar] [CrossRef]
- Nelson, P.T.; Wang, W.X.; Rajeev, B. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol. 2008, 18, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Esquela-Kerscher, A.; Slack, F. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Y.; Shu, S.; Cai, J.; Tang, C.; Dong, Z. Non-coding RNAs in kidney injury and repair. Am. J. Physiol.-Cell Physiol. 2019, 317, C177–C188. [Google Scholar] [CrossRef] [PubMed]
- Ignarski, M.; Islam, R.; Müller, R.U. Long non-coding RNAs in kidney disease. Int. J. Mol. Sci. 2019, 20, 3276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzinger-Le Meuth, V.; Fourdinier, O.; Charnaux, N.; Massy, Z.A.; Metzinger, L. The expanding roles of microRNAs in kidney pathophysiology. Nephrol. Dial. Transplant. 2019, 34, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Gong, Z.; Wu, Y.; Tian, Y.; Liao, X. Diagnostic value of urine tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 for acute kidney injury: A meta-analysis. PLoS ONE 2017, 12, e0170214. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.; Kang, H.S.; Park, J.-H.; Bae, J.-H.; Song, D.-K.; Im, S.-S. Recent insights into insulin-like growth factor binding protein 2 transcriptional regulation. Endocrinol. Metab. 2017, 32, 11–17. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Chang, Y.; Duan, D.; Sun, Z.; Guo, X. Elevation of IGFBP2 contributes to mycotoxin T-2-induced chondrocyte injury and metabolism. Biochem. Biophys. Res. Commun. 2016, 478, 385–391. [Google Scholar] [CrossRef]
- Li, H.-L.; Yan, Z.; Ke, Z.-P.; Tian, X.-F.; Zhong, L.-L.; Lin, Y.-T.; Xu, Y.; Zheng, D.-H. IGFBP2 is a potential biomarker in acute kidney injury (AKI) and resveratrol-loaded nanoparticles prevent AKI. Oncotarget 2018, 9, 36551–36560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendowski, A.; Ossoliński, K.; Nizioł, J.; Ruman, T. Gold nanostructures-assisted laser desorption/ionization mass spectrometry for kidney cancer blood serum biomarker screening. Int. J. Mass Spectrom. 2020, 456, 116396. [Google Scholar] [CrossRef]
- Takeda, M.; Khamdang, S.; Narikawa, S.; Kimura, H.; Kobayashi, Y.; Yamamoto, T.; Cha, S.H.; Sekine, T.; Endou, H. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J. Pharmacol. Exp. Ther. 2002, 300, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Gretz, N. Light-Emitting Agents for Noninvasive Assessment of Kidney Function. ChemistryOpen 2017, 6, 456. [Google Scholar] [CrossRef]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.; Gambhir, S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, A.; Hasanzadeh, M.; Sharifi, S.; Dizaj, S.M.; Khalilov, R.; Ahmadian, E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int. J. Biol. 2019, 124, 1246–1255. [Google Scholar] [CrossRef]
- Penna, F.J.; Chow, J.S.; Minnillo, B.J.; Passerotti, C.C.; Barnewolt, C.E.; Treves, S.T.; Fahey, F.H.; Dunning, P.S.; Freilich, D.A.; Retik, A.B.; et al. Identifying ureteropelvic junction obstruction by fluorescence imaging: A comparative study of imaging modalities to assess renal function and degree of obstruction in a mouse model. J. Urol. 2011, 185, 2405–2413. [Google Scholar] [CrossRef]
- Yu, M.; Liu, J.; Ning, X.; Zheng, J. High-contrast Noninvasive Imaging of Kidney Clearance Kinetics Enabled by Renal Clearable Nanofluorophores. Angew. Chem. 2015, 54, 15434–15438. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yu, M.; Zhou, C.; Yang, S.; Ning, X.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978–4981. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015, 9, 6655–6674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Sun, S.; Zhou, C.; Hao, G.; Liu, J.; Ramezani, S.; Yu, M.; Sun, X.; Zheng, J. Renal clearance and degradation of glutathione-coated copper nanoparticles. Bioconjug. Chem. 2015, 26, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Zhang, F.; Zhu, L.; Choi, K.Y.; Guo, N.; Guo, J.; Tackett, K.; Anilkumar, P.; Liu, G.; Quan, Q. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013, 7, 5684–5693. [Google Scholar] [CrossRef] [Green Version]
- Shirai, T.; Kohara, H.; Tabata, Y. Inflammation imaging by silica nanoparticles with antibodies orientedly immobilized. J. Drug Target. 2012, 20, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Siwawannapong, K.; Zhang, R.; Lei, H.; Jin, Q.; Tang, W.; Dong, Z.; Lai, R.-Y.; Liu, Z.; Kamkaew, A.; Cheng, L. Ultra-small Pyropheophorbide-a Nanodots for Near-infrared Fluorescence/Photoacoustic Imaging-guided Photodynamic Therapy. Theranostics 2020, 10, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Ix, J.H.; Mercado, N.; Shlipak, M.G.; Lemos, P.A.; Boersma, E.; Lindeboom, W.; O’Neill, W.W.; Wijns, W.; Serruys, P.W.J. Association of chronic kidney disease with clinical outcomes after coronary revascularization: The Arterial Revascularization Therapies Study (ARTS). Am. Heart J. 2005, 149, 512–519. [Google Scholar] [CrossRef]
- Neuwelt, E.A.; Hamilton, B.E.; Varallyay, C.G.; Rooney, W.R.; Edelman, R.D.; Jacobs, P.M.; Watnick, S.G. Ultrasmall superparamagnetic iron oxides (USPIOs): A future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 2009, 75, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Cohen, M.H.; Rieves, D.; Pazdur, R.J. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am. J. Hematol. 2010, 85, 315–319. [Google Scholar] [CrossRef]
- Jayasinghe, K.; Stark, Z.; Kerr, P.G.; Gaff, C.; Martyn, M.; Whitlam, J.; Creighton, B.; Donaldson, E.; Hunter, M.; Jarmolowicz, A. Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet. Med. 2020, 23, 183–191. [Google Scholar] [CrossRef]
- Walker, P.D. The renal biopsy. Arch. Pathol. Lab. Med. 2009, 133, 181–188. [Google Scholar] [CrossRef]
- Khosroshahi, H.T.; Abedi, B.; Daneshvar, S.; Sarbaz, Y.; Shakeri Bavil, A. Future of the renal biopsy: Time to change the conventional modality using nanotechnology. Int. J. Biomed. Imaging 2017, 2017, 6141734. [Google Scholar] [CrossRef] [PubMed]
- Stabi, K.L.; Bendz, L.M. Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann. Pharmacother. 2011, 45, 1571–1575. [Google Scholar] [CrossRef]
- Corot, C.; Robert, P.; Idée, J.-M.; Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 2006, 58, 1471–1504. [Google Scholar] [CrossRef] [PubMed]
- Egger, C.; Cannet, C.; Gérard, C.; Debon, C.; Stohler, N.; Dunbar, A.; Tigani, B.; Li, J.; Beckmann, N. Adriamycin-induced nephropathy in rats: Functional and cellular effects characterized by MRI. J. Magn. Reson. Imaging 2015, 41, 829–840. [Google Scholar] [CrossRef]
- Hauger, O.; Delalande, C.; Deminière, C.; Fouqueray, B.; Ohayon, C.l.; Garcia, S.; Trillaud, H.; Combe, C.; Grenier, N. Nephrotoxic nephritis and obstructive nephropathy: Evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide—Preliminary findings in a rat model. Radiology 2000, 217, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Hauger, O.; Grenier, N.; Deminère, C.; Lasseur, C.; Delmas, Y.; Merville, P.; Combe, C. USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: Initial results in humans. Eur. Radiol. 2007, 17, 2898–2907. [Google Scholar] [CrossRef]
- Bourrinet, P.; Bengele, H.H.; Bonnemain, B.; Dencausse, A.; Idee, J.-M.; Jacobs, P.M.; Lewis, J.M. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Investig. Radiol. 2006, 41, 313–324. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Hou, P.; Zhang, M.; Xu, K. One-pot preparation of hydrophilic manganese oxide nanoparticles as T1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens. Bioelectron. 2018, 102, 1–8. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleki Dizaj, S.; Eftekhari, A.; Mammadova, S.; Ahmadian, E.; Ardalan, M.; Davaran, S.; Nasibova, A.; Khalilov, R.; Valiyeva, M.; Mehraliyeva, S.; et al. Nanomaterials for Chronic Kidney Disease Detection. Appl. Sci. 2021, 11, 9656. https://doi.org/10.3390/app11209656
Maleki Dizaj S, Eftekhari A, Mammadova S, Ahmadian E, Ardalan M, Davaran S, Nasibova A, Khalilov R, Valiyeva M, Mehraliyeva S, et al. Nanomaterials for Chronic Kidney Disease Detection. Applied Sciences. 2021; 11(20):9656. https://doi.org/10.3390/app11209656
Chicago/Turabian StyleMaleki Dizaj, Solmaz, Aziz Eftekhari, Shakar Mammadova, Elham Ahmadian, Mohammadreza Ardalan, Soodabeh Davaran, Aygun Nasibova, Rovshan Khalilov, Mahbuba Valiyeva, Sevil Mehraliyeva, and et al. 2021. "Nanomaterials for Chronic Kidney Disease Detection" Applied Sciences 11, no. 20: 9656. https://doi.org/10.3390/app11209656
APA StyleMaleki Dizaj, S., Eftekhari, A., Mammadova, S., Ahmadian, E., Ardalan, M., Davaran, S., Nasibova, A., Khalilov, R., Valiyeva, M., Mehraliyeva, S., & Mostafavi, E. (2021). Nanomaterials for Chronic Kidney Disease Detection. Applied Sciences, 11(20), 9656. https://doi.org/10.3390/app11209656