Optimization of Process Parameters for Turning Hastelloy X under Different Machining Environments Using Evolutionary Algorithms: A Comparative Study
Abstract
:1. Introduction
2. Experimentation Details
3. Results and Discussion
3.1. Case Study 1
3.2. Case Study 2
3.3. Case Study 3
- Oij—ith run jth objective value;
- Obj—Best jth objective value;
- di—Euclidean distance.
4. Conclusions
- From the case study 1 (minimization of machinability indices individually), as compared to other algorithms such as GHO, GA, PSO, and GWO, the MFO algorithm yielded the minimum values of CF = 127.1 N, SR = 1.78 µm, and CT = 33.19 °C for the optimal set of turning process parameters such as vc = 124 m/min, f = 0.05 mm/rev, and cryogenic environment. The range of reduction in CF, SR, and CT values based on the MFO algorithm was 4–8 %, 1–23%, and 3–57%, respectively, compared with other algorithms.
- The simultaneous minimization of dual machinability indices with three combinations were performed using the MFO algorithm in case study 2. The results were compared with the results obtained from other algorithms. Based on the hypervolume indicator identified from the Pareto analyses, again the MFO outperformed others, and the corresponding optimal set of input parameters were identified.
- In case study 3, the simultaneous minimization of all three machinability indices was carried out using the MFO algorithm. The performance of MFO algorithm was compared with other algorithms using the quality indicators namely Diversity, Inverted Generational Distance, and Hyper Volume. From the analyses, the best results were obtained as CF = 171.13 N, SR = 2.35 µm and CT = 72.28 ºC form the MFO algorithm for the inputs of vc = 93 m/min, f = 0.05 mm/rev and cryogenic environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sivalingam, V.; Zhuoliang, Z.; Jie, S.; Baskaran, S.; Yuvaraj, N.; Gupta, M.K.; Aqib, M.K. Use of Atomized Spray Cutting Fluid Technique for the Turning of a Nickel Base Superalloy. Mater. Manuf. Process. 2021, 36, 373–380. [Google Scholar] [CrossRef]
- METODO. Optimization of the turning parameters for the cutting forces in the Hastelloy X superalloy based on the Taguchi method. Mater. Tehnol. 2014, 48, 249–254. [Google Scholar]
- Kadirgama, K.; Abou-El-Hossein, K.A.; Mohammad, B.; Al-Ani, H.; Noor, M. Cutting force prediction model by FEA and RSM when machining Hastelloy C-22HS with 90 holder. J. Sci. Ind. Res. 2008, 67, 421–427. [Google Scholar]
- Kadirgama, K.; Abou-El-Hossein, K.; Noor, M.; Sharma, K.; Mohammad, B. Tool life and wear mechanism when machining Hastelloy C-22HS. Wear 2011, 270, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Sofuoğlu, M.A.; Çakır, F.H.; Gürgen, S.; Orak, S.; Kuşhan, M.C. Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int. J. Adv. Manuf. Technol. 2018, 95, 83–97. [Google Scholar] [CrossRef]
- Dhananchezian, M. Study the machinability characteristics of Nicked based Hastelloy C-276 under cryogenic cooling. Measurement 2019, 136, 694–702. [Google Scholar] [CrossRef]
- Kesavan, J.; Senthilkumar, V.; Dinesh, S. Experimental and numerical investigations on machining of Hastelloy C276 under cryogenic condition. Mater. Today Proc. 2020, 27, 2441–2444. [Google Scholar] [CrossRef]
- Dhananchezian, M.; Rajkumar, K. Comparative study of cutting insert wear and roughness parameter (Ra) while turning Nimonic 90 and hastelloy C-276 by coated carbide inserts. Mater. Today Proc. 2020, 22, 1409–1416. [Google Scholar] [CrossRef]
- Oschelski, T.B.; Urasato, W.T.; Amorim, H.J.; Souza, A.J. Effect of cutting conditions on surface roughness in finish turning Hastelloy® X superalloy. Mater. Today Proc. 2021, 44 Pt 1, 532–537. [Google Scholar] [CrossRef]
- Venkatesan, K.; Devendiran, S.; Nishanth Purusotham, K.; Praveen, V.S. Study of machinability performance of Hastelloy-X for nanofluids, dry with coated tools. Mater. Manuf. Process. 2020, 35, 751–761. [Google Scholar] [CrossRef]
- Sivalingam, V.; Zan, Z.; Sun, J.; Selvam, B.; Gupta, M.K.; Jamil, M.; Mia, M. Wear behaviour of whisker-reinforced ceramic tools in the turning of Inconel 718 assisted by an atomized spray of solid lubricants. Tribol. Int. 2020, 148, 106235. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Guo, K.; Sivalingam, V.; Sun, J. Study on chip formation characteristics in turning NiTi shape memory alloys. J. Manuf. Process. 2020, 58, 787–795. [Google Scholar] [CrossRef]
- Chetan; Gosh, S.; Rao, P.V. Environment friendly machining of Ni–Cr–Co based super alloy using different sustainable techniques. Mater. Manuf. Process. 2016, 31, 852–859. [Google Scholar] [CrossRef]
- Iturbe, A.; Hormaetxe, E.; Garay, A.; Arrazola, P. Surface integrity analysis when machining Inconel 718 with conventional and cryogenic cooling. Procedia CIRP 2016, 45, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Sivaiah, P.; Chakradhar, D. Influence of cryogenic coolant on turning performance characteristics: A comparison with wet machining. Mater. Manuf. Process. 2017, 32, 1475–1485. [Google Scholar] [CrossRef]
- Tebaldo, V.; di Confiengo, G.G.; Faga, M.G. Sustainability in machining: “Eco-friendly” turning of Inconel 718. Surface characterisation and economic analysis. J. Clean. Prod. 2017, 140, 1567–1577. [Google Scholar] [CrossRef]
- Shokrani, A.; Al-Samarrai, I.; Newman, S.T. Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. J. Manuf. Process. 2019, 43, 229–243. [Google Scholar] [CrossRef]
- Mehta, A.; Hemakumar, S.; Patil, A.; Khandke, S.; Kuppan, P.; Oyyaravelu, R.; Balan, A. Influence of sustainable cutting environments on cutting forces, surface roughness and tool wear in turning of Inconel 718. Mater. Today Proc. 2018, 5, 6746–6754. [Google Scholar] [CrossRef]
- Khalilpourazari, S.; Khalilpourazary, S. Optimization of production time in the multi-pass milling process via a Robust Grey Wolf Optimizer. Neural Comput. Appl. 2018, 29, 1321–1336. [Google Scholar] [CrossRef]
- Khalilpourazari, S.; Khalilpourazary, S. A lexicographic weighted Tchebycheff approach for multi-constrained multi-objective optimization of the surface grinding process. Eng. Optim. 2017, 49, 878–895. [Google Scholar] [CrossRef]
- Khalilpourazari, S.; Khalilpourazary, S. A Robust Stochastic Fractal Search approach for optimization of the surface grinding process. Swarm Evol. Comput. 2018, 38, 173–186. [Google Scholar] [CrossRef]
- Rao, R.V.; Rai, D.P.; Balic, J. Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and PROMETHEE Method. J. Intell. Manuf. 2019, 30, 2101–2127. [Google Scholar] [CrossRef]
- Rao, R.V.; Rai, D.P.; Balic, J. A multi-objective algorithm for optimization of modern machining processes. Eng. Appl. Artif. Intell. 2017, 61, 103–125. [Google Scholar] [CrossRef]
- Khalilpourazari, S.; Khalilpourazary, S. Optimization of time, cost and surface roughness in grinding process using a robust multi-objective dragonfly algorithm. Neural Comput. Appl. 2020, 32, 3987–3998. [Google Scholar] [CrossRef]
- Khalilpourazari, S.; Khalilpourazary, S. SCWOA: An efficient hybrid algorithm for parameter optimization of multi-pass milling process. J. Ind. Prod. Eng. 2018, 35, 135–147. [Google Scholar] [CrossRef]
- Almeida, J.H.S., Jr.; St-Pierre, L.; Wang, Z.; Ribeiro, M.L.; Tita, V.; Amico, S.C.; Castro, S.G. Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinders. Compos. Part B Eng. 2021, 225, 109224. [Google Scholar] [CrossRef]
- Wang, Z.; Almeida, J.H.S., Jr.; St-Pierre, L.; Wang, Z.; Castro, S.G. Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders. Compos. Struct. 2020, 254, 112821. [Google Scholar] [CrossRef]
- Almeida, J.H.S., Jr.; Ribeiro, M.L.; Tita, V.; Amico, S.C. Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage. Compos. Struct. 2017, 178, 20–26. [Google Scholar] [CrossRef]
- Sridhar, R.; Subramani, C.; Pathy, S. A grasshopper optimization algorithm aided maximum power point tracking for partially shaded photovoltaic systems. Comput. Electr. Eng. 2021, 92, 107124. [Google Scholar] [CrossRef]
- Purushothaman, R.; Rajagopalan, S.; Dhandapani, G. Hybridizing Gray Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering. Appl. Soft Comput. 2020, 96, 106651. [Google Scholar] [CrossRef]
- Steczek, M.; Jefimowski, W.; Szeląg, A. Application of Grasshopper Optimization Algorithm for Selective Harmonics Elimination in Low-Frequency Voltage Source Inverter. Energies 2020, 13, 6426. [Google Scholar] [CrossRef]
- Sangwan, K.S.; Kant, G. Optimization of machining parameters for improving energy efficiency using integrated response surface methodology and genetic algorithm approach. Procedia CIRP 2017, 61, 517–522. [Google Scholar] [CrossRef]
- Hazir, E.; Ozcan, T. Response surface methodology integrated with desirability function and genetic algorithm approach for the optimization of CNC machining parameters. Arab. J. Sci. Eng. 2019, 44, 2795–2809. [Google Scholar] [CrossRef]
- Almeida, J.H.S., Jr.; Bittrich, L.; Nomura, T.; Spickenheuer, A. Cross-section optimization of topologically-optimized variable-axial anisotropic composite structures. Compos. Struct. 2019, 225, 111150. [Google Scholar] [CrossRef]
- Johari, N.F.; Zain, A.M.; Mustaffa, N.H.; Udin, A. Machining parameters optimization using hybrid firefly algorithm and particle swarm optimization. In Journal of Physics: Conference Series; IOP Publishing: Tokyo, Japan, 2017; Volume 892, p. 012005. [Google Scholar]
- Lmalghan, R.; Rao, K.; ArunKumar, S.; Rao, S.S.; Herbert, M.A. Machining parameters optimization of AA6061 using response surface methodology and particle swarm optimization. Int. J. Precis. Eng. Manuf. 2018, 19, 695–704. [Google Scholar] [CrossRef]
- Tamilarasan, A.; Rajmohan, T.; Ashwinkumar, K.; Dinesh, B.; Praveenkumar, M.; Reddy, R.D.; Kiran, K.S.; Elangumaran, R.; Krishnamoorthi, S. Hybrid WCMFO algorithm for the optimization of AWJ process parameters. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Tokyo, Japan, 2020; Volume 954, p. 012041. [Google Scholar]
- Kamaruzaman, A.F.; Zain, A.M.; Alwee, R.; Yusof, N.M.; Najarian, F. Optimization of Surface Roughness in Deep Hole Drilling using Moth-Flame Optimization. ELEKTRIKA J. Electr. Eng. 2019, 18, 62–68. [Google Scholar] [CrossRef]
- Fountas, N.; Koutsomichalis, A.; Kechagias, J.; Vaxevanidis, N. Multi-response optimization of CuZn39Pb3 brass alloy turning by implementing Grey Wolf algorithm. Frat. Ed Integrità Strutt. 2019, 13, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Sibalija, T.V.; Kumar, S.; Patel, G.M. A soft computing-based study on WEDM optimization in processing Inconel 625. Neural Comput. Appl. 2021, 33, 11985–12006. [Google Scholar] [CrossRef]
- Sekulic, M.; Pejic, V.; Brezocnik, M.; Gostimirović, M.; Hadzistevic, M. Prediction of surface roughness in the ball-end milling process using response surface methodology, genetic algorithms, and grey wolf optimizer algorithm. Adv. Prod. Eng. Manag. 2018, 13, 18–30. [Google Scholar] [CrossRef]
- Dhananchezian, M.; Rajkumar, K. Cryogenic turning of Hastelloy C-22. Mater. Today Proc. 2020, 22, 3075–3081. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, K.; Wu, A.; Qiu, M.; Hu, Y. A hybird method based on particle swarm optimization and moth-flame optimization. In Proceedings of the 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 24–25 August 2019; Volume 2, pp. 207–210. [Google Scholar]
Items | Descriptions |
---|---|
Workpiece | Hastealloy × (Ø20 × 300 mm) |
Material Properties | Chemical Composition (%): Ni:50, Cr:21, Mo:17, Fe:2, Co:1,W:1, Mn:0.80, Al:0.05, Si:0.08, C:0.01, B:0.01 Physical Properties: Tensile strength:1370 MPa, Yield Strength: 1170 Mpa, Hardness:388 HB |
Insert Specification | VNMG160408-SM1105, PVD TiAlN coated carbide insert, Sandvick |
Nose radius | 0.8 mm |
Rake and relief angle | 7°, 6° |
Depth of cut (ap) | 0.1 mm |
Length of cut (Loc) | 60 mm |
Environment | Dry, Wet and Cryogenic machining |
Cutting Fluid | Vegetable-based oil |
Cutting force | Kistler 9257B dynamometer Cutting |
Cutting temperature | FORTIC 226 infrared radiation imaging sensor |
Surface Roughness | TR200 portable surface roughness tester |
Evaluation and sampling Lengths are 4 and 0.8 mm |
Factors | Unit | Symbol | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|
Cutting speed (vc) | m/min | A | 33 | 87 | 124 |
Feed rate (f) | mm/rev | B | 0.05 | 0.1 | 0.15 |
Environment | C | 1 (Dry) | 2 (Wet) | 3 (Cryogenic) |
S.no | Cutting Speed | Feed Rate | Environment | Cuting Force | Surface Roughness | Cutting Temperature |
---|---|---|---|---|---|---|
m/min | mm/rev | Fz (N) | Ra (µm) | °C | ||
1 | 33 | 0.05 | Dry | 256 | 3.42 | 380 |
2 | 87 | 0.05 | Dry | 192 | 3.01 | 416 |
3 | 124 | 0.05 | Dry | 165 | 2.98 | 472 |
4 | 33 | 0.1 | Dry | 339 | 2.96 | 435 |
5 | 87 | 0.1 | Dry | 281 | 2.83 | 477 |
6 | 124 | 0.1 | Dry | 220 | 2.72 | 515 |
7 | 33 | 0.15 | Dry | 430 | 2.75 | 510 |
8 | 87 | 0.15 | Dry | 385 | 2.62 | 550 |
9 | 124 | 0.15 | Dry | 322 | 2.53 | 596 |
10 | 33 | 0.05 | Wet | 245 | 3.25 | 250 |
11 | 87 | 0.05 | Wet | 186 | 2.86 | 313 |
12 | 124 | 0.05 | Wet | 156 | 2.80 | 347 |
13 | 33 | 0.1 | Wet | 302 | 2.87 | 386 |
14 | 87 | 0.1 | Wet | 276 | 2.74 | 414 |
15 | 124 | 0.1 | Wet | 208 | 2.68 | 472 |
16 | 33 | 0.15 | Wet | 412 | 2.69 | 491 |
17 | 87 | 0.15 | Wet | 368 | 2.53 | 515 |
18 | 124 | 0.15 | Wet | 308 | 2.43 | 565 |
19 | 33 | 0.05 | Cryogeic | 228 | 2.65 | 50 |
20 | 87 | 0.05 | Cryogeic | 168 | 2.48 | 95 |
21 | 124 | 0.05 | Cryogeic | 132 | 2.29 | 110 |
22 | 33 | 0.1 | Cryogeic | 275 | 2.2 | 90 |
23 | 87 | 0.1 | Cryogeic | 249 | 2.01 | 135 |
24 | 124 | 0.1 | Cryogeic | 168 | 1.96 | 140 |
25 | 33 | 0.15 | Cryogeic | 367 | 1.92 | 110 |
26 | 87 | 0.15 | Cryogeic | 320 | 1.84 | 130 |
27 | 124 | 0.15 | Cryogeic | 279 | 1.76 | 165 |
Algorithms | Cutting Speed (m/min) | Feed Rate (mm/rev) | Environment | Machinability Index Value | Iteration No. |
---|---|---|---|---|---|
Cutting force | |||||
MFO | 124 | 0.05 | 3 | 127.10 N | 2 |
GA | 119.61 | 0.05 | 3 | 139.16 N | 3 |
GHO | 124 | 0.06 | 3 | 135.27 N | 61 |
GWO | 121.65 | 0.05 | 3 | 132.85 N | 78 |
PSO | 123.32 | 0.05 | 3 | 132.77 N | 10 |
Surface roughness | |||||
MFO | 124 | 0.05 | 3 | 1.78 µm | 1 |
GA | 86.23 | 0.147 | 3 | 1.88 µm | 3 |
GHO | 124 | 0.129 | 3 | 1.85 µm | 39 |
GWO | 134.17 | 0.15 | 3 | 1.81 µm | 79 |
PSO | 126.32 | 0.052 | 3 | 2.33 µm | 10 |
Cutting temperature | |||||
MFO | 34.04 | 0.05 | 3 | 33.19 °C | 22 |
GA | 80.77 | 0.05 | 3 | 78.98 °C | 67 |
GHO | 36 | 0.05 | 3 | 32.33 °C | 65 |
GWO | 39.57 | 0.06 | 3 | 48.44 °C | 43 |
PSO | 33.6 | 0.05 | 3 | 34.11 °C | 26 |
Algorithms | Machinability Indices Considered | Cutting Speed (m/min) | Feed rate (mm/rev) | Environment | Machinabilty Index Value (MI1) | Machinabilty Index Value (MI2) | Hyper Volume (HV) |
---|---|---|---|---|---|---|---|
GHO | CF & SR | 128.00 | 0.050 | 3 | 127.75 N | 2.26 µm | 0.301 |
GA | 126.00 | 0.062 | 3 | 127.12 N | 2.27 µm | 0.302 | |
PSO | 128.00 | 0.065 | 3 | 141.07 N | 2.17 µm | 0.319 | |
MFO | 124.00 | 0.060 | 3 | 136.57 N | 2.20 µm | 0.324 | |
GWO | 129.00 | 0.060 | 3 | 136.57 N | 2.20 µm | 0.321 | |
GHO | CF & TE | 53.87 | 0.050 | 3 | 206.31 N | 42.89 °C | 0.652 |
GA | 34.06 | 0.060 | 3 | 218.52 N | 32.79 °C | 0.633 | |
PSO | 35.06 | 0.062 | 3 | 218.52 N | 32.79 °C | 0.624 | |
MFO | 35.11 | 0.050 | 3 | 217.98 N | 31.26 °C | 0.697 | |
GWO | 46.90 | 0.050 | 3 | 211.12 N | 39.03 °C | 0.657 | |
GHO | SR & TE | 34.32 | 0.052 | 3 | 2.60 µm | 36.16 °C | 0.391 |
GA | 34.32 | 0.062 | 3 | 2.60 µm | 36.16 °C | 0.415 | |
PSO | 49.38 | 0.058 | 3 | 2.52 µm | 43.72 °C | 0.416 | |
MFO | 50.00 | 0.053 | 3 | 2.52 µm | 34.06 °C | 0.443 | |
GWO | 52.00 | 0.056 | 3 | 2.52 µm | 44.06 °C | 0.441 |
Algorithms | IGD | DIV | HV | Cutting Speed (m/min) | Feed Rate (mm/rev) | Environment | Cutting Force (N) | Surface Roughness (µm) | Temperature (°C) |
---|---|---|---|---|---|---|---|---|---|
GHO | 7.98 | 233.85 | 0.273 | 71.00 | 0.051 | 3 | 193.36 | 2.44 | 85.25 |
GA | 9.81 | 279.61 | 0.267 | 72.00 | 0.051 | 3 | 194.36 | 2.48 | 86.25 |
PSO | 5.79 | 264.68 | 0.265 | 94.62 | 0.052 | 3 | 173.13 | 2.45 | 73.28 |
MFO | 5.10 | 286.72 | 0.286 | 92.62 | 0.052 | 3 | 171.13 | 2.35 | 72.28 |
GWO | 6.70 | 267.48 | 0.269 | 96.62 | 0.052 | 3 | 174.13 | 2.55 | 74.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivalingam, V.; Sun, J.; Mahalingam, S.K.; Nagarajan, L.; Natarajan, Y.; Salunkhe, S.; Nasr, E.A.; Davim, J.P.; Hussein, H.M.A.M. Optimization of Process Parameters for Turning Hastelloy X under Different Machining Environments Using Evolutionary Algorithms: A Comparative Study. Appl. Sci. 2021, 11, 9725. https://doi.org/10.3390/app11209725
Sivalingam V, Sun J, Mahalingam SK, Nagarajan L, Natarajan Y, Salunkhe S, Nasr EA, Davim JP, Hussein HMAM. Optimization of Process Parameters for Turning Hastelloy X under Different Machining Environments Using Evolutionary Algorithms: A Comparative Study. Applied Sciences. 2021; 11(20):9725. https://doi.org/10.3390/app11209725
Chicago/Turabian StyleSivalingam, Vinothkumar, Jie Sun, Siva Kumar Mahalingam, Lenin Nagarajan, Yuvaraj Natarajan, Sachin Salunkhe, Emad Abouel Nasr, J. Paulo Davim, and Hussein Mohammed Abdel Moneam Hussein. 2021. "Optimization of Process Parameters for Turning Hastelloy X under Different Machining Environments Using Evolutionary Algorithms: A Comparative Study" Applied Sciences 11, no. 20: 9725. https://doi.org/10.3390/app11209725
APA StyleSivalingam, V., Sun, J., Mahalingam, S. K., Nagarajan, L., Natarajan, Y., Salunkhe, S., Nasr, E. A., Davim, J. P., & Hussein, H. M. A. M. (2021). Optimization of Process Parameters for Turning Hastelloy X under Different Machining Environments Using Evolutionary Algorithms: A Comparative Study. Applied Sciences, 11(20), 9725. https://doi.org/10.3390/app11209725