Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Heterogeneous Aquifer Models and Simulation Conditions
2.2. DGSA for Evaluating the Significance of Spatial Properties
2.3. NSGA-II for Multi-Objective Optimization Calibrating Well Allocations
3. Results and Discussion
3.1. Spatial Properties Influencing CO2 Trapping
3.2. Multi-Objective Optimization with Well Allocations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.; Springer: Berlin, Germany, 2007; ISBN 9780387332543. [Google Scholar]
- Chiandussi, G.; Codegone, M.; Ferrero, S.; Varesio, F.E. Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 2012, 63, 912–942. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Deb, K.; Zhang, Q.; Suganthan, P.N.; Chen, L. Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties. Swam Evol. Comput. 2019, 46, 104–117. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Pang, L.M.; Ishibuchi, H.; Shang, K. NSGA-II with simple modification works well a wide variety of many-objective problems. IEEE Access 2020, 8, 190240–190250. [Google Scholar] [CrossRef]
- Han, Y.; Park, C.; Kang, J.M. Prediction of nonlinear production performance in waterflooding project using a multi-objective evolutionary algorithm. Energy Explor. Exploit. 2011, 29, 129–142. [Google Scholar] [CrossRef]
- Min, B.; Park, C.; Jang, I.; Kang, J.M.; Chung, S. Development of Pareto-based evolutionary model integrated with dynamic goal programming and successive linear objective reduction. Appl. Soft Comput. 2015, 35, 75–112. [Google Scholar] [CrossRef]
- Wang, R. An improved nondominated sorting genetic algorithm for multiobjective problem. Math. Probl. Eng. 2016, 2016, 1519542. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J.M.; Park, C.; Park, Y.; Lim, S. Multi-objective history matching with a proxy model for the characterization of production performances at the shale gas reservoir. Energies 2017, 10, 579. [Google Scholar] [CrossRef]
- Ambrose, W.A.; Lakshminarasimhan, S.; Holtz, M.H.; Núñes-López, V.; Hovorka, S.D.; Duncan, I. Geological factors controlling CO2 storage capacity and performances: Case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage. Environ. Geol. 2008, 54, 1619–1633. [Google Scholar] [CrossRef]
- Oh, J.; Park, C.; Ahn, T. Sensitivity analysis of rock properties for CO2 sequestration into heterogeneous saline aquifers. In Proceeding of the 2019 AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2019; #GC53H-1230. Available online: https://agu-do03.confex.com/agu/fm19/meetingapp.cgi/Paper/562633 (accessed on 15 October 2021).
- Bosshart, N.W.; Azzolina, N.A.; Ayash, S.C.; Peck, W.D.; Gorecki, C.D.; Ge, J.; Jiang, T.; Dotzenrod, N.W. Quantifying the effects of depositional environment on deep saline formation CO2 storage efficiency and rate. Int. J. Greenh. Gas Con. 2018, 69, 8–19. [Google Scholar] [CrossRef]
- Lim, S.; Park, C.; Kim, J.; Jang, I. Integrated data assimilation and distance-based model selection with ensemble Kalman filter for characterization of uncertain geological scenarios. Nat. Resour. Res. 2020, 29, 1063–1085. [Google Scholar] [CrossRef]
- Fenwick, D.; Scheidt, C.; Caers, J. Quantifying asymmetric parameter interactions in sensitivity analysis: Application to reservoir modeling. Math. Geosci. 2014, 46, 493–511. [Google Scholar] [CrossRef]
- Park, J.; Yang, G.; Satija, A.; Scheidt, C.; Caers, J. DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments. Comput. Geosci. 2016, 97, 15–29. [Google Scholar] [CrossRef]
- Scheidt, C.; Li, L.; Caers, J. Quantifying Uncertainty in Subsurface Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9781119325833. [Google Scholar]
- Hoffmann, R.; Dassargues, A.; Goderniaux, P.; Hermans, T. Heterogeneity and prior uncertainty investigation using a joint heat and solute tracer experiment in alluvial sediments. Front. Earth Sci. 2019, 7, 108. [Google Scholar] [CrossRef]
- Park, J.; Caers, J. Direct forecasting of global and spatial model parameters from dynamic data. Comput. Geosci. 2020, 143, 104567. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Con. 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Kumar, S.; Foroozesh, J.; Edlmann, K.; Rezk, M.G.; Lim, C.Y. A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers. J. Nat. Gas Sci. Eng. 2020, 81, 103437. [Google Scholar] [CrossRef]
- Yang, F.; Bai, B.; Tang, D.; Shari, D.; David, W. Characteristics of CO2 sequestration in saline aquifers. Pet. Sci. 2010, 7, 83–92. [Google Scholar] [CrossRef] [Green Version]
- De Silva, P.N.K.; Ranjith, P.G. A study of methodologies for CO2 storage capacity estimation of saline aquifers. Fuel 2012, 93, 13–27. [Google Scholar] [CrossRef]
- Jo, S.; Park, C.; Ryu, D.W.; Ahn, S. Adaptive surrogate estimation with spatial features using a deep convolutional autoencoder for CO2 geological sequestration. Energies 2021, 14, 413. [Google Scholar] [CrossRef]
- Nogues, J.P.; Nordbotten, J.M.; Celia, M.A. Detecting leakage of brine or CO2 through abandoned wells in a geological sequestration operation using pressure monitoring wells. Energy Procedia 2011, 4, 3620–3627. [Google Scholar] [CrossRef] [Green Version]
- González-Nicolás, A.; Baú, D.; Cody, B.M. Application of binary permeability fields for the study of CO2 leakage from geological carbon storage in saline aquifers of the Michigan basin. Math. Geosci. 2018, 50, 525–547. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Sun, Y.; Chen, M.; Hao, Y.; Wolery, T.J.; Bourcier, W.L.; Court, B.; Celia, M.A.; Friedmann, S.J.; Aines, R.D. Actie CO2 reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity. Int. J. Greenh. Gas Con. 2012, 6, 230–245. [Google Scholar] [CrossRef]
- Harp, D.R.; Stauffer, P.H.; O’Malley, D.; Jiao, Z.; Egenolf, E.P.; Miller, T.A.; Martinez, D.; Hunter, K.A.; Middleton, R.S.; Bielicki, J.M.; et al. Development of robust pressure management strategies for geological CO2 sequestration. Int. J. Greenh. Gas Con. 2017, 64, 43–59. [Google Scholar] [CrossRef]
- González-Nicolás, A.; Cihan, A.; Petrusak, R.; Zhou, Q.; Trautz, R.; Riestenberg, D.; Godec, M.; Birkholzer, J.T. Pressure management via brine extraction in geological CO2 storage: Adaptive optimization strategies under poorly characterized reservoir conditions. Int. J. Greenh. Gas Con. 2019, 83, 176–185. [Google Scholar] [CrossRef]
- González-Nicolás, A.; Trevisan, L.; Illangasekare, T.H.; Cihan, A.; Birkholzer, J. Enhancing capillary trapping effectiveness through proper time scheduling of injection of supercritical CO2 in heterogeneous formations. Greenh. Gases 2017, 7, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Cameron, D.A.; Durlofsky, L.J. Optimization of well placement, CO2 injection rates, and brine cycling for geological carbon sequestration. Int. J. Greenh. Gas Con. 2012, 10, 100–112. [Google Scholar] [CrossRef]
- Tadjer, A.; Bratvold, R.B. Managing uncertainty in geological CO2 storage using Bayesian evidential learning. Energies 2021, 14, 1557. [Google Scholar] [CrossRef]
- Petvipusit, R.; Elsheikh, A.H.; Laforce, T.; King, P.R.; Blunt, M.J. A robust multi-criterion optimization of CO2 sequestration under model uncertainty. In Proceedings of the Second EAGE Sustainable Earth Sciences Conference and Exhibition, Pau, France, 30 September–4 October 2013. cp-361-00015. [Google Scholar] [CrossRef]
- Jayne, R.S.; Wu, H.; Pollyea, R.M. Geologic CO2 sequestration and permeability uncertainty in a highly heterogeneous reservoir. Int. J. Greenh. Gas Con. 2019, 83, 128–139. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef] [Green Version]
- Shamshiri, H.; Jafarpour, B. Controlled CO2 injection into heterogeneous geological formations for improved solubility and residual trapping. Water Resour. Res. 2012, 48, W02530. [Google Scholar] [CrossRef]
- Agarwal, R.K. Modeling, simulation, and optimization of geological sequestration of CO2. J. Fluids Eng. 2019, 141, 100801. [Google Scholar] [CrossRef]
- Jahediesfanjani, H.; Warwick, P.D.; Anderson, S.T. Estimating the pressure-limited CO2 injection and storage capacity of the United States saline formations: Effect of the presence of hydrocarbon reservoirs. Int. J. Greenh. Gas Con. 2018, 79, 14–24. [Google Scholar] [CrossRef]
- Li, C.; Maggi, F.; Zhang, K.; Guo, C.; Gan, Y.; El-Zein, A.; Pan, Z.; Shen, L. Effects of variable injection rate on reservoir responses and implications for CO2 storage in saline aquifers. Greenh. Gases 2019, 9, 652–671. [Google Scholar] [CrossRef]
- Burton, M.; Kumar, N.; Bryant, S.L. CO2 injectivity into brine aquifers: Why relative permeability matters as much as absolute permeability. Energy Procedia 2009, 1, 3091–3098. [Google Scholar] [CrossRef] [Green Version]
- Safarzadeh, M.A.; Motahhari, S.M. Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II). Pet. Sci. 2014, 11, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhuang, Y.; Tao, R.; Liu, L.; Zhang, L.; Du, J. Multi-objective optimization for the deployment of carbon capture utilization and storage supply chain considering economic and environmental performance. J. Clean. Prod. 2020, 270, 122481. [Google Scholar] [CrossRef]
- Ma, Y.Z. Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling; Springer: Cham, Switzerland, 2019; ISBN 9783030178598. [Google Scholar] [CrossRef]
- Lie, K.-A. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST); Cambridge University Press: London, UK, 2019; ISBN 9781108492430. [Google Scholar]
- Lie, K.-A.; Krogstad, S.; Ligaarden, I.S.; Natvig, J.R.; Nilsen, H.M.; Skaflestad, B. Open-source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 2012, 16, 297–322. [Google Scholar] [CrossRef] [Green Version]
Property | Abbreviation | Value Range |
---|---|---|
1 Mean permeability of sandstone 2 (millidarcy) | PermSand | 300~450 |
Mean porosity of sandstone (unitless) | PoroSand | 0.22~0.28 |
3 Std of permeability (sandstone; millidarcy) | StdPerm | 12.5~50 |
Std of porosity (sandstone; unitless) | StdPoro | 0.005~0.02 |
Shale volume ratio (%) | SVR | 2~20 |
Dykstra–Parsons coefficient (unitless) | VDP | 0.1896~0.9185 |
Property (Abbreviation) 1 | L Aquifer | H Aquifer |
---|---|---|
PoroSand | 0.274 | 0.220 |
PermSand | 301.5 | 448.7 |
SVR | 2 | 20 |
VDP | 0.3488 | 0.9169 |
StdPoro | 0.012 | 0.012 |
StdPerm | 14.0 | 30.7 |
L-1 | L-2 | H-1 | H-2 | ||
---|---|---|---|---|---|
Well allocation (m3/day) | I1 well | 14,874 | 14,068 | 14,925 | 14,831 |
I2 well | 371 | 360 | 302 | 300 | |
I3 well | 389 | 463 | 108 | 108 | |
I4 well | 366 | 1109 | 665 | 761 | |
Maximum BHP 1 (bar) | I1 well | 132.55 | 132.13 | 134.35 | 134.29 |
I2 well | 125.88 | 125.90 | 125.72 | 125.72 | |
I3 well | 123.06 | 123.15 | 122.81 | 122.82 | |
I4 well | 123.51 | 124.18 | 123.61 | 123.68 | |
Subtotal | 505.00 | 505.37 | 506.49 | 506.50 | |
Trapping CO2 volume 2 (m3) | 754,304 | 759,058 | 581,682 | 582,005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Oh, J.; Jo, S.; Jang, I.; Lee, K.S. Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty. Appl. Sci. 2021, 11, 9759. https://doi.org/10.3390/app11209759
Park C, Oh J, Jo S, Jang I, Lee KS. Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty. Applied Sciences. 2021; 11(20):9759. https://doi.org/10.3390/app11209759
Chicago/Turabian StylePark, Changhyup, Jaehwan Oh, Suryeom Jo, Ilsik Jang, and Kun Sang Lee. 2021. "Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty" Applied Sciences 11, no. 20: 9759. https://doi.org/10.3390/app11209759
APA StylePark, C., Oh, J., Jo, S., Jang, I., & Lee, K. S. (2021). Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty. Applied Sciences, 11(20), 9759. https://doi.org/10.3390/app11209759