Telerehabilitation—A Viable Option for the Recovery of Post-Stroke Patients
Abstract
:1. Introduction
2. Search Strategy and Article Selection
3. Who Can Benefit from TR?
4. How to Organize TR at Patient’s Home?
5. How Can Technology Contribute to Rehabilitation Progress?
6. Telerehabilitation during COVID-19
7. The Acceptability, Accessibility and Usability of Telerehabilitation
8. Engagement and Motivation in Telerehabilitation
9. Innovation in Telerehabilitation
Innovative Technology | Principle | Advantages | |||
---|---|---|---|---|---|
1 2 | TR for upper limb motor deficits | Visual muscle biofeedback through EMG during serious games | real-time continuous feedback of agonist and antagonist muscle contraction during exercises | training of muscle control, strength and arm function while focusing on wrist extensor muscle activity and limiting wrist flexor unwitting contraction | [17] |
Robotic device with forearm support and sensors to detect active movements (angles, force) | specific software that generates serious games and real-time visualization of the movements on a tablet | feedback offered to the patient to bring more motivation through the process | [6,47] | ||
3 | TR for walking relearning | Vibration signals applied through a wearable device as a substitute for the therapist’s tactile feedback | enhanced feedback that guides the patients through their training without capturing their visual attention | simulation of the physical contact with a therapist and the sense of human support and encouragement of importance for the psychology of patients during rehabilitation | [44] |
4 | TR for aphasia and cognition | Tablet with integrated virtual reality system remotely controlled | memory, attention, perception, speech abilities, language, global cognitive functions and executive functions trained through personalized exercises | big variety of interactive exercises available, adapted by the therapist in terms of duration and difficulty to the level of impairment each patient presents; better than paper-pencil exercises; decrease in anxiety levels | [49,52] |
5 | TR for fitness | Aerobic exercises performed at home while video conferencing | guidance and supervision of a therapist during training | safe, reliable, good attendance rates, enjoyable and efficient | [51] |
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moradi, V.; Babaee, T.; Esfandiari, E.; Lim, S.B.; Kordi, R. Telework and telerehabilitation programs for workers with a stroke during the COVID-19 pandemic: A commentary. World 2021, 68, 77–80. [Google Scholar]
- Podury, A.; Raefsky, S.M.; Dodakian, L.; McCafferty, L.; Le, V.; McKenzie, A.; See, J.; Zhou, R.J.; Nguyen, T.; Wong, G.; et al. Social Network Structure Is Related to Functional Improvement From Home-Based Telerehabilitation After Stroke. Front. Neurol. 2021, 12, 603767. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Gao, X.; Zhu, W. A Construction Method of Lower Limb Rehabilitation Robot with Remote Control System. Appl. Sci. 2021, 11, 867. [Google Scholar] [CrossRef]
- Marwaa, M.N.; Kristensen, H.K.; Guidetti, S.; Ytterberg, C. Physiotherapists’ and occupational therapists’ perspectives on information and communication technology in stroke rehabilitation. PLoS ONE 2020, 15, e0236831. [Google Scholar] [CrossRef] [PubMed]
- Laver, K.E.; Adey-Wakeling, Z.; Crotty, M.; Lannin, N.A.; George, S.; Sherrington, C.; Cochrane Database of Systematic Reviews. Telerehabilitation Services for Stroke. 2020. Available online: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010255.pub3/full (accessed on 5 June 2021).
- Rozevink, S.G.; Van der Sluis, C.K.; Garzo, A.; Keller, T.; Hijmans, J.M. HoMEcare aRm rehabiLItatioN (MERLIN): Telerehabilitation using an unactuated device based on serious games improves the upper limb function in chronic stroke. J. Neuro. Eng. Rehabil. 2021, 18, 48. [Google Scholar] [CrossRef]
- Cramer, S.C.; Dodakian, L.; Le, V.; See, J.; Augsburger, R.; McKenzie, A.; Zhou, R.J.; Chiu, N.L.; Heckhausen, J.; Cassidy, J.M.; et al. Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 1079. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Dodakian, L.; Le, V.; McKenzie, A.; See, J.; Augsburger, R.; Zhou, R.J.; Raefsky, S.M.; Nguyen, T.; Wong, G.; et al. A Feasibility Study of Expanded Home-Based Telerehabilitation After Stroke. Front. Neurol. 2021, 11, 611453. [Google Scholar] [CrossRef]
- Neibling, B.A.; Jackson, S.M.; Hayward, K.S.; Barker, R.N. Perseverance with technology-facilitated home-based upper limb practice after stroke: A systematic mixed studies review. J. Neuro. Eng. Rehabil. 2021, 18, 43. [Google Scholar] [CrossRef]
- Platz, T. Clinical Pathways in Stroke Rehabilitation: Evidence-Based Clinical Practice Recommendations; Springer International Publishing: Cham, Switzerland, 2021; Available online: http://link.springer.com/10.1007/978-3-030-58505-1 (accessed on 5 June 2021).
- Appleby, E.; Gill, S.T.; Hayes, L.K.; Walker, T.L.; Walsh, M.; Kumar, S. Effectiveness of telerehabilitation in the management of adults with stroke: A systematic review. PLoS ONE 2019, 14, e0225150. [Google Scholar] [CrossRef] [Green Version]
- Ostrowska, P.M.; Śliwiński, M.; Studnicki, R.; Hansdorfer-Korzon, R. Telerehabilitation of Post-Stroke Patients as a Therapeutic Solution in the Era of the Covid-19 Pandemic. Healthcare 2021, 9, 654. [Google Scholar] [CrossRef] [PubMed]
- Lambercy, O.; Lehner, R.; Chua, K.; Wee, S.K.; Rajeswaran, D.K.; Kuah, C.W.K.; Ang, W.T.; Liang, P.; Campolo, D.; Hussain, A.; et al. Neurorehabilitation From a Distance: Can Intelligent Technology Support Decentralized Access to Quality Therapy? Front. Robot AI 2021, 8, 612415. [Google Scholar] [CrossRef]
- Amorim, P.; Sousa Santos, B.; Dias, P.; Silva, S.; Martins, H. Serious Games for Stroke Telerehabilitation of Upper Limb—A Review for Future Research. Int. J. Telerehab. 2020, 12, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Irsay, L.; Checicheș, A.; Perja, D.; Borda, I.M.; Dogaru, G.; Onac, I. Pharmacological pain management in patients with chronic kidney disease. Balneo 2019, 10, 12–16. [Google Scholar] [CrossRef]
- Irsay, L.; Checiches, A.; Perja, D.; Borda, I.M.; Dogaru, G.; Ungur, R.; Ciubean, A.; Ciortea, V. Pharmacological pain management in patients with chronic hepatic disease. Balneo 2019, 10, 119–123. [Google Scholar] [CrossRef]
- Marin-Pardo, O.; Phanord, C.; Donnelly, M.R.; Laine, C.M.; Liew, S.-L. Development of a Low-Cost, Modular Muscle–Computer Interface for At-Home Telerehabilitation for Chronic Stroke. Sensors 2021, 21, 1806. [Google Scholar] [CrossRef]
- Irsay, L.; Ciubean, A. Telemedicine and Ocupational Therapy. In Ocupational Therapy; “Iuliu Hatieganu” University Medical Publisher: Cluj-Napoca, Romania, 2020; pp. 196–199. [Google Scholar]
- Doumas, I.; Everard, G.; Dehem, S.; Lejeune, T. Serious games for upper limb rehabilitation after stroke: A meta-analysis. J. Neuro. Eng. Rehabil. 2021, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, A.S.; Zafonte, R.; Hefner, J.; Iaccarino, M.A.; Silver, J.; Paganoni, S. Evidence-Based Physiatry: Efficacy of Home-Based Telerehabilitation Versus In-Clinic Therapy for Adults After Stroke. Am. J. Phys. Med. Rehabil. 2020, 99, 764–765. [Google Scholar] [CrossRef]
- Piron, L.; Turolla, A.; Agostini, M.; Zucconi, C.; Cortese, F.; Zampolini, M.; Zaninni, M.; Dam, M.; Ventura, L.; Battauz, M.; et al. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. J. Rehabil. Med. 2009, 41, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdea, G.C.; Grampurohit, N.; Kim, N.; Polistico, K.; Kadaru, A.; Pollack, S.; Oh-Park, M.; Barrett, A.M.; Kaplan, E.; Masmela, J.; et al. Feasibility of integrative games and novel therapeutic game controller for telerehabilitation of individuals chronic post-stroke living in the community. Top Stroke Rehabil. 2020, 27, 321–336. [Google Scholar] [CrossRef]
- Saywell, N.; Vandal, A.C.; Brown, P.; Hanger, H.C.; Hale, L.; Mudge, S.; Milosavljevic, S.; Feigin, V.; Taylor, D. Telerehabilitation to improve outcomes for people with stroke: Study protocol for a randomised controlled trial. Trials 2012, 13, 233. [Google Scholar] [CrossRef] [Green Version]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 11, CD008349. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, L.V.; Kane, C.; Borstad, A.; Strahl, N.; Uswatte, G.; Taub, E.; Morris, D.; Hall, A.; Arakelian, M.; Mark, V. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): Protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurol. 2017, 17, 109. [Google Scholar] [CrossRef] [PubMed]
- Uswatte, G.; Taub, E.; Lum, P.; Brennan, D.; Barman, J.; Bowman, M.H.; Taylor, A.; McKay, A.; Sloman, S.B.; Morris, D.M.; et al. Tele-rehabilitation of upper-extremity hemiparesis after stroke: Proof-of-concept randomized controlled trial of in-home constraint-induced movement therapy. Restor. Neurol. Neurosci. 2021, 39, 303–318, preprint. [Google Scholar]
- Smith, M.A.; Tomita, M.R. Combined effects of Telehealth and Modified Constraint-Induced Movement Therapy for Individuals with Chronic Hemiparesis. Int. J. Telerehabil. 2020, 12, 51–62. [Google Scholar] [CrossRef]
- Keidel, M.; Vauth, F.; Richter, J.; Hoffmann, B.; Soda, H.; Griewing, B.; Scibor, M. Home-based telerehabilitation after stroke. Nervenarzt 2017, 88, 113–119. [Google Scholar] [CrossRef]
- Uslu, A.S.; Gerber, S.M.; Schmidt, N.; Röthlisberger, C.; Wyss, P.; Vanbellingen, T.; Schaller, S.; Wyss, C.; Koenig-Bruhin, M.; Berger, T.; et al. Investigating a new tablet-based telerehabilitation app in patients with aphasia: A randomised, controlled, evaluator-blinded, multicentre trial protocol. BMJ Open 2020, 10, e037702. [Google Scholar] [CrossRef]
- Øra, H.P.; Kirmess, M.; Brady, M.C.; Winsnes, I.E.; Hansen, S.M.; Becker, F. Telerehabilitation for aphasia-protocol of a pragmatic, exploratory, pilot randomized controlled trial. Trials 2018, 19, 208. [Google Scholar] [CrossRef]
- Peñaloza, C.; Scimeca, M.; Gaona, A.; Carpenter, E.; Mukadam, N.; Gray, T.; Shampant, S.; Kiran, S. Telerehabilitation for Word Retrieval Deficits in Bilinguals With Aphasia: Effectiveness and Reliability as Compared to In-person Language Therapy. Front. Neurol. 2021, 12, 589330. [Google Scholar] [CrossRef]
- Braley, M.; Pierce, J.S.; Saxena, S.; De Oliveira, E.; Taraboanta, L.; Anantha, V.; Lakhan, S.E.; Kiran, S. A Virtual, Randomized, Control Trial of a Digital Therapeutic for Speech, Language, and Cognitive Intervention in Post-stroke Persons With Aphasia. Front. Neurol. 2021, 12, 626780. [Google Scholar] [CrossRef]
- Chen, S.-C.; Lin, C.-H.; Su, S.-W.; Chang, Y.-T.; Lai, C.-H. Feasibility and effect of interactive telerehabilitation on balance in individuals with chronic stroke: A pilot study. J. Neuro. Eng. Rehabil. 2021, 18, 71. [Google Scholar] [CrossRef]
- Miclaus, R.S.; Roman, N.; Henter, R.; Caloian, S. Lower Extremity Rehabilitation in Patients with Post-Stroke Sequelae through Virtual Reality Associated with Mirror Therapy. Int. J. Environ. Res. Public Health 2021, 18, 2654. [Google Scholar] [CrossRef]
- Miclaus, R.; Roman, N.; Caloian, S.; Mitoiu, B.; Suciu, O.; Onofrei, R.R.; Pavel, E.; Neculau, A. Non-Immersive Virtual Reality for Post-Stroke Upper Extremity Rehabilitation: A Small Cohort Randomized Trial. Brain Sci. 2020, 10, 655. [Google Scholar] [CrossRef]
- Signal, N.; Martin, T.; Leys, A.; Maloney, R.; Bright, F. Implementation of telerehabilitation in response to COVID-19: Lessons learnt from neurorehabilitation clinical practice and education. N. Z. J. Physiother. 2020, 48, 117–126. [Google Scholar]
- Burgos, P.I.; Lara, O.; Lavado, A.; Rojas-Sepúlveda, I.; Delgado, C.; Bravo, E.; Kamisato, C.; Torres, J.; Castañeda, V.; Cerda, M. Exergames and Telerehabilitation on Smartphones to Improve Balance in Stroke Patients. Brain Sci. 2020, 10, 773. [Google Scholar] [CrossRef]
- Digital Technologies, Web and Social Media Study Group of the Italian Society of Neurology; Iodice, F.; Romoli, M.; Giometto, B.; Clerico, M.; Tedeschi, G.; Bonavita, S.; Leocani, L.; Lavorgna, L. Stroke and digital technology: A wake-up call from COVID-19 pandemic. Neurol. Sci. 2021, 42, 805–809. [Google Scholar] [CrossRef]
- Thau, L.; Siegal, T.; Heslin, M.E.; Rana, A.; Yu, S.; Kamen, S.; Chen, A.; Vigilante, N.; Gallagher, S.; Wegner, K.; et al. Decline in Rehab Transfers Among Rehab-Eligible Stroke Patients During the COVID-19 Pandemic. J. Stroke Cerebrovasc. Dis. 2021, 30, 105857. [Google Scholar] [CrossRef]
- Atashzar, S.F.; Carriere, J.; Tavakoli, M. Review: How Can Intelligent Robots and Smart Mechatronic Modules Facilitate Remote Assessment, Assistance, and Rehabilitation for Isolated Adults With Neuro-Musculoskeletal Conditions? Front. Robot AI 2021, 8, 610529. [Google Scholar] [CrossRef]
- Assenza, C.; Catania, H.; Antenore, C.; Gobbetti, T.; Gentili, P.; Paolucci, S.; Morelli, D. Continuity of Care During COVID-19 Lockdown: A Survey on Stakeholders’ Experience With Telerehabilitation. Front. Neurol. 2021, 11, 617276. [Google Scholar] [CrossRef]
- Chang, M.C.; Boudier-Revéret, M. Usefulness of Telerehabilitation for Stroke Patients During the COVID-19 Pandemic. Am. J. Phys. Med. Rehabil. 2020, 99, 582. [Google Scholar] [CrossRef]
- Guzik, A.K.; Martin-Schild, S.; Tadi, P.; Chapman, S.N.; Al Kasab, S.; Martini, S.R.; Meyer, B.M.; Demaerschalk, B.M.; Woznaik, M.A.; Southerland, A.M. Telestroke Across the Continuum of Care: Lessons from the COVID-19 Pandemic. J. Stroke Cerebrovasc. Dis. 2021, 30, 105802. [Google Scholar] [CrossRef] [PubMed]
- Handelzalts, S.; Ballardini, G.; Avraham, C.; Pagano, M.; Casadio, M.; Nisky, I. Integrating Tactile Feedback Technologies Into Home-Based Telerehabilitation: Opportunities and Challenges in Light of COVID-19 Pandemic. Front. Neurorobot. 2021, 15, 617636. [Google Scholar] [CrossRef] [PubMed]
- Wentink, M.M.; Bodegom-Vos, L.; van Brouns, B.; Arwert, H.J.; Vliet Vlieland, T.P.M.; De Kloet, A.J.; Meesters, J.J. What is Important in E-health Interventions for Stroke Rehabilitation? A Survey Study among Patients, Informal Caregivers, and Health Professionals. Int. J. Telerehab. 2018, 10, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choukou, M.-A.; Mbabaali, S.; Bani Hani, J.; Cooke, C. Haptic-Enabled Hand Rehabilitation in Stroke Patients: A Scoping Review. Appl. Sci. 2021, 11, 3712. [Google Scholar] [CrossRef]
- Guillén-Climent, S.; Garzo, A.; Muñoz-Alcaraz, M.N.; Casado-Adam, P.; Arcas-Ruiz-Ruano, J.; Mejías-Ruiz, M.; Mayordomo-Reira, F.J. A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting. J. Neuro. Eng. Rehabil. 2021, 18, 41. [Google Scholar] [CrossRef]
- De Cock, E.; Batens, K.; Feiken, J.; Hemelsoet, D.; Oostra, K.; De Herdt, V. The feasibility, usability and acceptability of a tablet-based aphasia therapy in the acute phase following stroke. J. Commun. Disord. 2021, 89, 106070. [Google Scholar] [CrossRef]
- Maresca, G.; Maggio, M.G.; Latella, D.; Cannavò, A.; De Cola, M.C.; Portaro, S.; Stagnitti, M.C.; Silvestri, G.; Torissi, M.; Bramanti, A.; et al. Toward Improving Poststroke Aphasia: A Pilot Study on the Growing Use of Telerehabilitation for the Continuity of Care. J. Stroke Cerebrovasc. Dis. 2019, 28, 104303. [Google Scholar] [CrossRef] [PubMed]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. Available online: https://www.ahajournals.org/doi/10.1161/STR.0000000000000098 (accessed on 5 June 2021). [CrossRef]
- Galloway, M.; Marsden, D.L.; Callister, R.; Nilsson, M.; Erickson, K.I.; English, C. The Feasibility of a Telehealth Exercise Program Aimed at Increasing Cardiorespiratory Fitness for People After Stroke. Int. J. Telerehab. 2019, 11, 9–28. [Google Scholar] [CrossRef] [Green Version]
- Torrisi, M.; Maresca, G.; De Cola, M.C.; Cannavò, A.; Sciarrone, F.; Silvestri, G.; Bramanti, A.; De Luca, R.; Calabrò Salvatore, R. Using telerehabilitation to improve cognitive function in post-stroke survivors: Is this the time for the continuity of care? Int. J. Rehabil. Res. 2019, 42, 344–351. [Google Scholar] [CrossRef]
Studies | Exercises | Results | |
---|---|---|---|
Hemiparesis/upper limb | most studies, diverse methodology [21,22,23]; reviews [5,7,14,23,24] | Constraint—induced movement therapy (CIMT) [25,26,27]; heterogeneous exercises [21,22,23]; biofeedback [17] | comparable with face-to-face therapy |
Hemiparesis/lower limb | few studies; not represented primary objective; reviews [5,23] | heterogeneous exercises | favorable telerehabilitation results; low costs |
Aphasia | comparative studies [28]; randomized controlled trials [29,30,31,32] | various interventions | controversial results |
Gait disorder Balance | few studies and reviews [5,24,33] | gait exercises; exercises for improving balance | favorable results assessment: Berg balance scale, time up and go test, modified Falls efficacy scale, motricity Index |
Psycho-emotional and cognitive disorders | secondary objectives; few studies and reviews [5,22,24,32] | cognitive therapy [32]; diverse therapy | improvements in depression and cognition [22]; cognitive function [24]; functional communication [5] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciortea, V.M.; Motoașcă, I.; Ungur, R.A.; Borda, I.M.; Ciubean, A.D.; Irsay, L. Telerehabilitation—A Viable Option for the Recovery of Post-Stroke Patients. Appl. Sci. 2021, 11, 10116. https://doi.org/10.3390/app112110116
Ciortea VM, Motoașcă I, Ungur RA, Borda IM, Ciubean AD, Irsay L. Telerehabilitation—A Viable Option for the Recovery of Post-Stroke Patients. Applied Sciences. 2021; 11(21):10116. https://doi.org/10.3390/app112110116
Chicago/Turabian StyleCiortea, Viorela Mihaela, Irina Motoașcă, Rodica Ana Ungur, Ileana Monica Borda, Alina Deniza Ciubean, and Laszlo Irsay. 2021. "Telerehabilitation—A Viable Option for the Recovery of Post-Stroke Patients" Applied Sciences 11, no. 21: 10116. https://doi.org/10.3390/app112110116
APA StyleCiortea, V. M., Motoașcă, I., Ungur, R. A., Borda, I. M., Ciubean, A. D., & Irsay, L. (2021). Telerehabilitation—A Viable Option for the Recovery of Post-Stroke Patients. Applied Sciences, 11(21), 10116. https://doi.org/10.3390/app112110116