The Transformation by Catalysis of Prebiotic Chemical Systems to Useful Biochemicals: A Perspective Based on IR Spectroscopy of the Primary Chemicals: Solid-Phase and Water-Soluble Catalysts
Abstract
:1. Introduction
Earlier Studies on the Catalytic Force of Montmorillonite
2. Clay Versus Gas
The Search for a Suitable Vibration
3. Copper Induced Reactivity
3.1. Some Results from the Copper-Exchanged Clay Minerals
3.1.1. Montmorillonite
3.1.2. Laponite
4. Solubilized COS Acting in Solution
4.1. AATC (Alfa-Amino Acid Thiocarbamate)
4.2. Further Reactions of AATC
5. Present-Day Sulfur-Containing Coenzymes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodd, M.S.; Papineau, D.; Grenne, T.; Slack, J.F.; Rittner, M.; Pirajno, F.; O’Neil, J.; Little, C.T. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 2017, 543, 6064. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L. A Production of Amino Acids Under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.L.; Urey, H.C. Organic Compound Synthesis on the Primitive Earth. Science 1959, 130, 245–251. [Google Scholar] [CrossRef] [PubMed]
- De Duve, C. The Beginnings of Life on Earth. Am. Sci. 1995, 83, 428–437. [Google Scholar]
- De Duve, C. Vital Dust: Life as a Cosmic Imperative; Basic Books: New York, NY, USA, 1995. [Google Scholar]
- Larsson, R.; Malek, A. The Transformation by Catalysis of Prebiotic Chemical Systems to Useful Biochemicals: A Perspective Based on IR Spectroscopy of the Primary Chemicals: I. The Synthesis of Peptides by the Condensation of Amino Acids. Appl. Sci. 2020, 10, 928. [Google Scholar] [CrossRef] [Green Version]
- Larsson, R.; Malek, A.; Odenbrand, I. The Transformation by Catalysis of Prebiotic Chemical Systems to Useful Biochemicals: A Perspective Based on IR Spectroscopy of the Primary Chemicals II. Catalysis and the Building of RNA. Appl. Sci. 2020, 10, 4712. [Google Scholar] [CrossRef]
- Larsson, R. On the Stepwise Change of the Activation Energy of Catalytic Reactions. Z. Phys. Chem. Leipz. 1987, 268, 721–732. [Google Scholar] [CrossRef]
- Larsson, R. A Model of Selective Energy Transfer at the Active Site of the Catalyst. J. Mol. Catal. 1989, 55, 70–83. [Google Scholar] [CrossRef]
- Larsson, R. Concluding remarks on the theory of selective energy transfer and exemplification on a zeolite kinetics study. Monatsh. Chem. 2012, 144, 21–28. [Google Scholar] [CrossRef]
- Ferris, J.P. Montmorillonite-catalysed formation of RNA oligomers: The possible roe of catalysis in the origins of life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1777–1786. [Google Scholar] [CrossRef] [Green Version]
- Kitadai, N.; Maruyama, S. Origins of building blocks of life: A review. Geosci. Front. 2018, 9, 1117–1153. [Google Scholar] [CrossRef]
- Pross, A.; Pascal, R. The origin of life: What we know, what we can know and what we will never know. Open Biol. 2013, 3, 120190. [Google Scholar] [CrossRef] [Green Version]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Karakassides, M.A.; Gournis, D.; Petridis, D. An infrared reflectance study of Si-O vibrations in thermally treated alka-li-saturated montmorillonites. Clay Miner. 1999, 34, 429–438. [Google Scholar] [CrossRef]
- Hang, V.C.; Korovkin, M.V.; Ananyeva, I.G. Identification of clay minerals in reservoir rocks by FTIR spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 2016, 43, 012004. [Google Scholar]
- Ali Fil, B.; Özmetin, C.; Korkmaz, M. Characterization of Electrokinetic Properties of Montmorillonites. Bulg. Chem. Commun. 2014, 46, 258–262. [Google Scholar]
- Madejova, J.; Bujdák, J.; Gates, W.P.; Komadel, P. Preparation and Infrared Spectroscopic Characterization of re-duced-charge Montmorilllonite with various Li-contents. Clay Miner. 1996, 31, 233–241. [Google Scholar] [CrossRef]
- Lain’e, M.; Balan, E.; Allard, T.; Paineau, E.; Jeunesse PMpstafavi, M.; Robert, J.-L.; Le Caër, S. Supporting information for “Reaction mechanism in swelling clays under Ionizing radiation: Influence of the water amount and the nature of the clay”. RSC Adv. 2017, 7, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Park, E.S.; Ro, H.W.; Nguyen, C.V.; Jaffe, R.L.; Yoon, D.Y. Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s. Chem. Mater. 2008, 20, 1548–1554. [Google Scholar] [CrossRef]
- Popa, C.L.; Albu, M.; Bartha, C.; Costescu, A.; Luculescu, C.; Trusca, R.; Antohe, S. Structural Characterization and Optical Properties of Hydroxyapatite/Collagen Matrix. Rom. Rep. Phys. 2016, 68, 1149–1158. [Google Scholar]
- Wu, J.; Zhang, Z.; Yu, X.; Pan, H.; Jiang, W.; Xu, X.; Tang, R. Mechanism of promoted dipeptide formation on hydroxyapatite crystal surfaces. Chin. Sci. Bull. 2011, 56, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, T.; Yogo, K.; Pantawong, C.; Kikuchi, E. Catalytic properties of copper-exchanged clays for the dehydrogenation of methanol to methyl formate. Appl. Catal. A Gen. 1995, 126, 177–186. [Google Scholar] [CrossRef]
- Herzberg, G.; Crawford, B.L. Infrared and Raman Spectra of Polyatomic Molecules. J. Phys. Chem. 1946, 50, 288. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Mahmutagic, E.; Frost, R.L. Mid-Infrared and infrared emission spectroscopy of Cu-exchanged montmorillonite. J. Colloid Interface Sci. 2005, 296, 640–646. [Google Scholar] [CrossRef] [Green Version]
- Montmorillonite Stabilized Chitosan-co-Mucin Hydrogel for Tissue Engineering Applications. Available online: https://pubs.rsc.org/en/Content/ArticleLanding/2021/RA/D1RA04803A (accessed on 20 October 2021).
- Ghadiri, M.; Hau, H.; Chrzanowski, W.; Agus, H.; Rohanizadeh, R. Laponite clay as a carrier for in situ delivery of tetracycline. RSC Adv. 2013, 3, 20193–20201. [Google Scholar] [CrossRef]
- Ponce, C.P.; Kloprogge, J.T. Urea-Assisted Synthesis and Characterization of Saponite with Different Octahedral (Mg, Zn, Ni, Co) and Tetrahedral Metals (Al, Ga, B), a Review. Life 2020, 10, 168. [Google Scholar] [CrossRef]
- Larsson, R. A SET route to Ethyl Carboxylic Acid from Ethanol and Carbon Monoxide. Open J. Chem. 2020, 6, 17–20. [Google Scholar]
- Leman, L.; Orgel, L.; Ghadiri, M.R. Carbonyl Sulfide—Mediated Prebiotic Formation of Peptides. Science 2004, 306, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.E.; Mohammed, A.M. Experimental and Computational Vibration Study of Amino Acids. Int. Lett. Chem. Phys. Astron. 2013, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bracher, P.J.; Snyder, P.W.; Bohall, B.R.; Whitesides, G.M. The relative rates of thiol–thioester exchange and hydrolysis for alkyl and aryl thioalkanoates in water. Orig. Life Evol. Biosph. 2011, 41, 399–412. [Google Scholar] [CrossRef]
- Danger, G.; Plasson, R.; Pascal, R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem. Soc. Rev. 2012, 41, 5416–5429. [Google Scholar] [CrossRef] [PubMed]
- NIST Chemistry WebBook, SRD 69; Carbamothioic acid, butylethyl-, S-propyl ester’ or ‘Pebulate; Identifier 1114-71-2-inchi. Available online: https://webbook.nist.gov/cgi/inchi?ID=C1114712&Mask=80 (accessed on 20 October 2021).
- Gomez-Zavaglia, A.; Fausto, R. Low-Temperature Solid-State FTIR Study of Glycine, Sarcosine. Available online: https://pubs.rsc.org/en/content/articlelanding/2003/CP/b304888h (accessed on 20 October 2021).
- Wikipedia Coenzyme A. Available online:https://en.wikikedia.org/wiki/Coenzyme_A (accessed on 20 October 2021).
- Martinez, D.L.; Tsuchiya, Y.; Gout, I. Coenzyme A biosynthetic machinery in mammalian cells. Biochem. Soc. Trans. 2014, 42, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Theodoulou, F.L.; Sibon, O.C.; Jackowski, S.; Gout, I. Coenzyme A and its derivatives: Renaissance of a textbook classic. Biochem. Soc. Trans. 2014, 42, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Christidis, G.E.; Aldan, C.; Chryssikos, G.D.; Gionis, V.; Kaio, H.; Stöter, M.; Breu, J.; Robertr, J.-L. The Nature of Laponite: Pure Hectorite or a Mixture of different Trioctahedral Phases? Minerals 2018, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Schirber, M. The Volcanic Origin of Life; LiveScience.com: New York, NY, USA, 5 November 2004. [Google Scholar]
Ref. | V cm−1 | Locality/Notification |
---|---|---|
[14] | 1030 | SAZ−1 Cheto AZ. USA |
[15] | 1054 | Milos Island/Greece (alkali treated) |
[16] | 1032 | Tomsk (educational sample) |
[17] | 1035 | Kremnica mountains, Slovakia |
[18] | 1048 | Süd-Chemie Clay Processing Plants, Balikesir, Turkey |
Mean value | 1040 ± 9 |
Catalyst | Cu/Lapo | Cu/Sapo | Cu/Mont | Cu/TSM |
---|---|---|---|---|
Conversion of methanol (%) | 35.8 | 9.9 | 3.3 | 19.7 |
Selectivity (%) | ||||
MF | 82.2 | 12.4 | - | 89.3 |
DME | - | 80.4 | 100 | - |
CO | 17,8 | - | - | 10.7 |
CO2 | - | 7.5 | - | - |
Copper content (mmol/gcat) | 0.60 | 0.64 | 064 | 0.60 |
Surface area (m2/g) | 313 | 233 | 80 | 56 |
Vibration of Si-O-Si cm−1 | 970 | 1036 ± 1 |
No Cu | No Cu | Series A | Series A | Series B | Series B | Assignment |
---|---|---|---|---|---|---|
Cheto | Miles | Cheto | Miles | Cheto | Miles | |
1090 | 1100 | 1086 | 1105 | 1088 | 1108 | Si-O-Si str. |
1040 | 1050 | 1037 | 1050 | 1035 | 1050 | Si-O-Si str. |
Catalyst | Cu/Lapo | Cu/Sapo | Cu/Mont | Cu/TSM |
---|---|---|---|---|
νas Si-O-Si | 970 | 1010 | 1036 ± 1 | |
Reference | [27] | [28] (Figure 3 of that Ref.) | [25] | |
Catalyst | Lapo | Sapo | Mont | TSM |
νas Si-O-Si without Cu | 1000 | 1058 | 1040 | |
Methanol | ||||
ν3 + ν6” (-CH3) | 2914 | |||
Reference | 24 | |||
Ratio ν3 + ν6”/νas Si-O-Si(Cu) | 2914/970 = 3.004 | 2914/1010 = 2.885 | 2914/1036 = 2.813 |
Amino Acid | Empirical Data | Calculated Ab Initio | Mean Value VNH2 |
---|---|---|---|
l-Alanine | 3094 | 3310 | 3205 |
l-Phenyl-alanine | 3436 | 3187 | 3312 |
l-Aspartic acidid | 3141 | 3189 | 3165 |
l-Glutamic acid | 3020 | 3130 | 3075 |
Mean value | 3174 ± 131 | 3204 ± 53 | 3189 ± 69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larsson, R.; Malek, A. The Transformation by Catalysis of Prebiotic Chemical Systems to Useful Biochemicals: A Perspective Based on IR Spectroscopy of the Primary Chemicals: Solid-Phase and Water-Soluble Catalysts. Appl. Sci. 2021, 11, 10125. https://doi.org/10.3390/app112110125
Larsson R, Malek A. The Transformation by Catalysis of Prebiotic Chemical Systems to Useful Biochemicals: A Perspective Based on IR Spectroscopy of the Primary Chemicals: Solid-Phase and Water-Soluble Catalysts. Applied Sciences. 2021; 11(21):10125. https://doi.org/10.3390/app112110125
Chicago/Turabian StyleLarsson, Ragnar, and Abdul Malek. 2021. "The Transformation by Catalysis of Prebiotic Chemical Systems to Useful Biochemicals: A Perspective Based on IR Spectroscopy of the Primary Chemicals: Solid-Phase and Water-Soluble Catalysts" Applied Sciences 11, no. 21: 10125. https://doi.org/10.3390/app112110125
APA StyleLarsson, R., & Malek, A. (2021). The Transformation by Catalysis of Prebiotic Chemical Systems to Useful Biochemicals: A Perspective Based on IR Spectroscopy of the Primary Chemicals: Solid-Phase and Water-Soluble Catalysts. Applied Sciences, 11(21), 10125. https://doi.org/10.3390/app112110125