On Selecting Composite Functions Based on Polynomials for Responses Describing Extreme Magnitudes of Structures
Abstract
:Featured Application
Abstract
1. Introduction
2. Theoretical Background
2.1. Direct Symbolic Integration Approach
- the expectation:
- the variance:
- the mth central probabilistic moment (for m > 2):
2.2. Response Function Method
2.3. Curve Fitting Error Measures
3. Criteria of Response Function Selection
3.1. Assumptions and Selection of Reference Functions for Numerical Examples
3.2. Step One—Accuracy of the Coefficients
3.3. Step Two—Accuracy of the Probabilistic Moments
3.4. Step Three—No Information about the Form of the Function the Discrete Values Come From
4. Observations through a Numerical Example of Steel Diagrid Grillages
4.1. Finite Element Analysis
- number of load increments: 5;
- the maximum number of iterations per increment: 40;
- number of reductions for the increment length: 3;
- coefficient of the increment length reduction: 0.5;
- the maximum number of BFGS corrections: 10;
- tolerance factor of the relative norm for the residual forces: 0.0001;
- tolerance factor for the relative norm of displacements: 0.0001.
4.2. Using the RMSEmod Criterion
- for elastic displacements (with the assumption of small deformations):
- and for the first eigenfrequency:
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer Boake, T. Understanding Steel Design; Birkhäuser: Bazel, Switzerland, 2013. [Google Scholar]
- Moon, K. Design and Construction of Steel Diagrid Structures. In Proceedings of the 11th Nordic Steel Construction Conference-NSCC 2009, Malmö, Sweden, 2–4 September 2009; Swedish Institute of Steel Construction SBI: Stockholm, Sweden, 2009; pp. 398–405. [Google Scholar]
- Cornell, C.A. A probability-based structural code. Am. Concr. Inst. J. 1969, 66, 974–985. [Google Scholar] [CrossRef]
- Tichý, M. First-order third-moment reliability method. Struct. Saf. 1994, 16, 189–200. [Google Scholar] [CrossRef]
- Ono, T.; Idota, H. Development of High Order Moment Standardization Method into structural design and its efficiency. J. Struct. Constr. Eng. 1986, 365, 40–47. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-G.; Lu, Z.-H. Fourth-Moment Standardization for Structural Reliability Assessment. J. Struct. Eng. 2007, 133, 916–924. [Google Scholar] [CrossRef]
- Zhang, L.W. An improved fourth-order moment reliability method for strongly skewed distributions. Struct. Multidiscip. Optim. 2020, 62, 1213–1225. [Google Scholar] [CrossRef]
- Lu, Z.-H.; Hu, D.-Z.; Zhao, Y.-G. Second-Order Fourth-Moment Method for Structural Reliability. J. Eng. Mech. 2017, 143, 06016010. [Google Scholar] [CrossRef]
- Ghanem, R.G.; Spanos, P.D. Stochastic Finite Elements: A Spectral Approach; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Hurtado, J.E.; Barbat, A.H. Monte Carlo techniques in computational stochastic mechanics. Arch. Comput. Methods Eng. 1998, 5, 3–30. [Google Scholar] [CrossRef]
- Settineri, D.; Falsone, G. An APDM-based method for the analysis of systems with uncertainties. Comput. Methods Appl. Mech. Eng. 2014, 278, 828–852. [Google Scholar] [CrossRef]
- Falsone, G.; Laudani, R. Matching the principal deformation mode method with the probability transformation method for the analysis of uncertain systems. Int. J. Numer. Methods Eng. 2019, 118, 395–410. [Google Scholar] [CrossRef]
- Jin, R.; Chen, W.; Simpson, T.W. Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 2001, 23, 1–13. [Google Scholar] [CrossRef]
- Simpson, T.W.; Booker, A.J.; Ghosh, D.; Giunta, A.A.; Koch, P.N.; Yang, R.J. Approximation methods in multidisciplinary analysis and optimization: A panel discussion. Struct. Multidiscip. Optim. 2004, 27, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Simpson, T.W.; Peplinski, J.D.; Koch, P.N.; Allen, J.K. Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput. 2001, 17, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Santner, T.J.; Williams, B.J.; Notz, W.I. The Design and Analysis of Computer Experiments; Springer: New York, NY, USA, 2003. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 1998; ISBN 9781118625590. [Google Scholar]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Shukla, S.K. Metamodeling: What is it good for? IEEE Des. Test Comput. 2009, 26, 96. [Google Scholar] [CrossRef]
- Fang, K.-T.; Li, R.; Sudjianto, A. Design and Modeling for Computer Experiments; Chapman and Hall/CRC: New York, NY, USA, 2005. [Google Scholar]
- Blatman, G.; Sudret, B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2010, 95, 1216–1229. [Google Scholar] [CrossRef]
- Blatman, G.; Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 2011, 230, 2345–2367. [Google Scholar] [CrossRef]
- Smith, M. Neural Networks for Statistical Modeling; Von Nostrand Reinhold: New York, NY, USA, 1993. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Chen, S.; Chng, E.S.; Alkadhimi, K. Regularized orthogonal least squares algorithm for constructing radial basis function networks. Int. J. Control 1996, 64, 829–837. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, B.; Wang, W. A multiwavelet support vector regression method for efficient reliability assessment. Reliab. Eng. Syst. Saf. 2015, 136, 132–139. [Google Scholar] [CrossRef]
- Sacks, J.; Welch, W.J.; Mitchell, T.J.; Wynn, H.P. Design and analysis of computer experiments. Stat. Sci. 1989, 4, 409–423. [Google Scholar] [CrossRef]
- Pokusiński, B.M.; Kamiński, M.M. Various response functions in lattice domes reliability via analytical integration and finite element method. Int. J. Appl. Mech. Eng. 2018, 23, 445–469. [Google Scholar] [CrossRef] [Green Version]
- Kamiński, M.M.; Świta, P. Generalized stochastic finite element method in elastic stability problems. Comput. Struct. 2011, 89, 1241–1252. [Google Scholar] [CrossRef]
- Kamiński, M.M. On semi-analytical probabilistic finite element method for homogenization of the periodic fiber-reinforced composites. Int. J. Numer. Methods Eng. 2011, 86, 1144–1162. [Google Scholar] [CrossRef]
- Rajashekhar, M.R.; Ellingwood, B.R. A new look at the response surface approach for reliability analysis. Struct. Saf. 1993, 12, 205–220. [Google Scholar] [CrossRef]
- Guan, X.L.; Melchers, R.E. Effect of response surface parameter variation on structural reliability estimates. Struct. Saf. 2002, 23, 429–444. [Google Scholar] [CrossRef]
- Gavin, H.P.; Yau, S.C. High-order limit state functions in the response surface method for structural reliability analysis. Struct. Saf. 2008, 30, 162–179. [Google Scholar] [CrossRef]
- Allaix, D.L.; Carbone, V.I. An improvement of the response surface method. Struct. Saf. 2011, 33, 165–172. [Google Scholar] [CrossRef]
- Bucher, C. Metamodels of optimal quality for stochastic structural optimization. Probabilistic Eng. Mech. 2018, 54, 131–137. [Google Scholar] [CrossRef]
- Bucher, C.G.; Bourgund, U. A fast and efficient response surface approach for structural reliability problems. Struct. Saf. 1990, 7, 57–66. [Google Scholar] [CrossRef]
- Babuŝka, I.; Tempone, R.; Zouraris, G.E. Solving elliptic boundary value problems with uncertain coefficients by the finite element method: The stochastic formulation. Comput. Methods Appl. Mech. Eng. 2005, 194, 1251–1294. [Google Scholar] [CrossRef]
- Keese, A.; Matthies, H.G. Hierarchical parallelisation for the solution of stochastic finite element equations. Comput. Struct. 2005, 83, 1033–1047. [Google Scholar] [CrossRef]
- Kleiber, M.; Hien, T. The Stochastic Finite Element Method; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Liu, W.K.; Belytschko, T.; Mani, A. Random field finite elements. Int. J. Numer. Methods Eng. 1986, 23, 1831–1845. [Google Scholar] [CrossRef]
- Stefanou, G.; Savvas, D.; Papadrakakis, M. Stochastic finite element analysis of composite structures based on mesoscale random fields of material properties. Comput. Methods Appl. Mech. Eng. 2017, 326, 319–337. [Google Scholar] [CrossRef]
- Pokusiński, B.M.; Kamiński, M.M. On influence of the response functions on the diagrid and orthogonal grillages reliability by the stochastic iterative perturbation-based finite element method. AIP Conf. Proc. 2018, 1922, 150011. [Google Scholar] [CrossRef]
- Char, B.W.; Geddes, K.O.; Gonnet, G.H.; Leong, B.L.; Monagan, M.B.; Watt, S.M. First Leaves: A Tutorial Introduction to Maple V; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Forsberg, J.; Nilsson, L. On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Struct. Multidiscip. Optim. 2005, 29, 232–243. [Google Scholar] [CrossRef]
- Xia, B.; Lü, H.; Yu, D.; Jiang, C. Reliability-based design optimization of structural systems under hybrid probabilistic and interval model. Comput. Struct. 2015, 160, 126–134. [Google Scholar] [CrossRef]
- Bucher, C.; Most, T. A comparison of approximate response functions in structural reliability analysis. Probabilistic Eng. Mech. 2008, 23, 154–163. [Google Scholar] [CrossRef]
- Xia, B.; Yu, D.; Liu, J. Transformed perturbation stochastic finite element method for static response analysis of stochastic structures. Finite Elem. Anal. Des. 2014, 79, 9–21. [Google Scholar] [CrossRef]
- Faravelli, L. Response-Surface Approach for Reliability Analysis. J. Eng. Mech. 1989, 115, 2763–2781. [Google Scholar] [CrossRef]
- Xia, B.; Yu, D. Change-of-variable interval stochastic perturbation method for hybrid uncertain structural-acoustic systems with random and interval variables. J. Fluids Struct. 2014, 50, 461–478. [Google Scholar] [CrossRef]
- Huang, B.; Li, Q.S.; Tuan, A.Y.; Zhu, H. Recursive approach for random response analysis using non-orthogonal polynomial expansion. Comput. Mech. 2009, 44, 309–320. [Google Scholar] [CrossRef]
- Rahman, S. A polynomial dimensional decomposition for stochastic computing. Int. J. Numer. Methods Eng. 2008, 76, 2091–2116. [Google Scholar] [CrossRef]
- Kianifar, M.R.; Campean, F. Performance evaluation of metamodelling methods for engineering problems: Towards a practitioner guide. Struct. Multidiscip. Optim. 2020, 61, 159–186. [Google Scholar] [CrossRef] [Green Version]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures; Wiley: New York, NY, USA, 1971; ISBN 9781118032428. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: New York, NY, USA, 1965. [Google Scholar]
- Vanmarcke, E. Random Fields: Analysis and Synthesis; MIT Press: Cambridge, MA, USA, 1983; ISBN 9812563539. [Google Scholar]
- Kottegoda, N.T.; Rosso, R. Applied Statistics for Civil and Environmental Engineers; Blackwell: Cichester, UK, 2008; ISBN 9781405179171. [Google Scholar]
- Sokołowski, D.; Kamiński, M.M. Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects. Acta Mech. 2018, 229, 3727–3765. [Google Scholar] [CrossRef] [Green Version]
- Kamiński, M.M. The Stochastic Perturbation Method for Computational Mechanics; Wiley: Chichester, UK, 2013; ISBN 9780470770825. [Google Scholar]
- Hughes-Hallett, D.; Gleason, A.M.; McCallum, W.G. Calculus: Single and Multivariable, 7th ed.; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kamiński, M.; Solecka, M. Optimization of the truss-type structures using the generalized perturbation-based Stochastic Finite Element Method. Finite Elem. Anal. Des. 2013, 63, 69–79. [Google Scholar] [CrossRef]
- Kamiński, M.M.; Szafran, J. The least squares stochastic finite element method in structural stability analysis of steel skeletal structures. Int. J. Appl. Mech. Eng. 2015, 20, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Björck, Å. Numerical Methods for Least Squares Problems; SIAM: Philadelphia, PA, USA, 1996. [Google Scholar]
- Wolberg, J. Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments; Springer: Berlin, Germany, 2005; ISBN 3540256741. [Google Scholar]
- Kamiński, M.M. On the dual iterative stochastic perturbation-based finite element method in solid mechanics with Gaussian uncertainties. Int. J. Numer. Methods Eng. 2015, 104, 1038–1060. [Google Scholar] [CrossRef]
- Kamiński, M.M.; Sokołowski, D. Dual probabilistic homogenization of the rubber-based composite with random carbon black particle reinforcement. Compos. Struct. 2016, 140, 783–797. [Google Scholar] [CrossRef]
- Kamiński, M.M.; Pokusiński, B.M. Reliability of some axisymmetric shell structure by the response function method and the generalized stochastic perturbation technique. In Proceedings of the Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues—3rd Polish Congress of Mechanics, PCM 2015 and 21st International Conference on Computer Methods in Mechanics, CMM 2015, Gdansk, Poland, 8–11 September 2015; pp. 279–282. [Google Scholar]
- Kamiński, M.M.; Strąkowski, M. On sequentially coupled thermo-elastic stochastic finite element analysis of the steel skeletal towers exposed to fire. Eur. J. Mech. A/Solids 2017, 62, 80–93. [Google Scholar] [CrossRef]
- Rabenda, M.; Kamiński, M.M. Dual Probabilistic Analysis of the Transient Heat Transfer by the Stochastic Finite Element Method with Optimized Polynomial Basis. J. Civ. Eng. Environ. Archit. 2017, 64, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Runge, C. Über Empirische Funktionen und die Interpolation Zwischen Äquidistanten Ordinaten. Z. Math. Phys. 1901, 46, 224–243. [Google Scholar]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Sclove, S.L. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 1987, 52, 333–343. [Google Scholar] [CrossRef]
- Steiger, J.H.; Lind, J.C. Statistically based tests for the number of common factors. In Proceedings of the Annual Meeting of the Psychometric Society: Structural Equation Modeling, Iowa City, IA, USA, 28 May 1980. [Google Scholar]
- Anscombe, F.J. Graphs in statistical analysis. Am. Stat. 1973, 27, 17–21. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 1990: Eurocode—Basis of Structural Design; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- European Committee for Standardization. EN 1991-1-1: Eurocode 1: Actions on Structures—Part 1-1: General Actions—Densities, Self-Weight, Imposed Loads for Buildings; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- European Committee for Standardization. EN 1993-1-1: Eurocode 3: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- European Committee for Standardization. EN 13474-2: Glass in Building—Design of Glass Panes—Part 2: Design for Uniformaly Distributed Loads; European Committee for Standardization: Brussels, Belgium, 2000. [Google Scholar]
- European Committee for Standardization. EN 13474-3: Glass in Building—Determination of the Strength of Glass Panes—Part 3: General Method of Calculation and Determination of Strength of Glass by Testing; European Committee for Standardization: Brussels, Belgium, 2008. [Google Scholar]
- European Committee for Standardization. EN 16612: Glass in Building—Determination of the Load Resistance of Glass Panels by Calculation and Testing; European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- Oden, J.T. Finite Elements of Nonlinear Continua; McGraw-Hill: New York, NY, USA, 1972; ISBN 978-0-486-44973-9. [Google Scholar]
- Owen, D.R.J.; Hinton, E. Finite Elements in Plasticity—Theory and Practice; Pineridge Press: Swansea, UK, 1980. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Fox, D.D. The Finite Element Method for Solid and Structural Mechanics, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9781856176347. [Google Scholar]
- Schittich, C.; Staib, G.; Balkow, D.; Schuler, M.; Sobek, W. Glass Construction Manual, 2nd ed.; Birkhäuser: Munich, Germany, 2007. [Google Scholar]
- Falsone, G. An extension of the Kazakov relationship for non-Gaussian random variables and its use in the non-linear stochastic dynamics. Probabilistic Eng. Mech. 2005, 20, 45–56. [Google Scholar] [CrossRef]
1 | 2 | ||||||
Polynomial Order (POb) | Polynomial Number (poly) | Polynomial Form |
---|---|---|
1 | 1 | |
1 | 2 | |
2 | 1 | |
2 | 2 | |
2 | 3 | |
2 | 4 | |
3 | 1 | |
3 | 2 | |
3 | 3 | |
3 | 4 | |
4 | 1 | |
4 | 2 | |
4 | 3 | |
4 | 4 | |
5 | 1 | |
5 | 2 | |
5 | 3 | |
5 | 4 | |
6 | 1 | |
6 | 2 | |
6 | 3 | |
6 | 4 |
Base Polynomial Type | Polynomial Form | Δrel,c |
---|---|---|
reference | – | |
approximation for y1 | 4.57 | |
approximation for y22 | 115.38 |
Set I | Set II | Set III | Set IV | |
---|---|---|---|---|
Expected value of ξ | 9.0 (identical) | |||
Variance of ξ | 11.0 (identical) | |||
Expected value of η | 7.50 (with the accuracy of two decimal places) | |||
Variance of η | 4.125 ± 0.003 | |||
Linear regression equation | η = 0.500ξ + 3.00 (with an accuracy of three and two decimal places, respectively) | |||
Linear correlation coefficient | 0.816 (three decimal places match) | |||
Coefficient of determination | 0.666 (three decimal places match) | |||
Third central moment of η | −0.406 | −8.207 | 11.553 | 9.384 |
Skewness of η | −0.048 | −0.979 | 1.380 | 1.121 |
Fourth central moment of η | 30.7 | 42.3 | 72.1 | 61.7 |
Kurtosis of η | −1.199 | −0.514 | 1.240 | 0.629 |
A Results | B Results | C Results | |
---|---|---|---|
Reference base POb | 1 | 2 | 5 |
Approximation base POa | 1 | 2 | 5 |
Reference base poly | 1 | 3 | 1 |
Data-generating function | y7 | y9 | y7 |
Approximating function | y7 | y9 | y7 |
RMSEmod | 35.83 | 42.70 | 41.45 |
maxΔrel,m | ≤10−4 | 7.404 × 10−4 | ≤10−4 |
Δrel,c | 3.210 × 10−7 | 1.002 | 4.000 |
Model | Nodal Points Number | Supports Number | Bars Number | Panels Number | Basic Panel Size (m) | Glass Pane Thicknesses (mm) | Steel Weight (kg) |
---|---|---|---|---|---|---|---|
OB | 24 | 16 | 38 | 15 | 3.00 × 3.12 (rectangle sides) | 2 × 19 + 8 | 7325 |
OS | 40 | 22 | 67 | 28 | 2.25 × 2.23 (rectangle sides) | 2 × 12 + 8 | 8557 |
RB | 24 | 16 | 53 | 30 | 3.00 × 3.12 (legs) | 2 × 10 + 8 | 9983 |
RS | 40 | 22 | 95 | 56 | 2.25 × 2.23 (legs) | 2 × 8 + 8 | 11,388 |
TB | 32 | 20 | 73 | 42 | 3.00 (equilateral triangle side) | 2 × 10 + 8 | 10,090 |
TS | 50 | 26 | 121 | 72 | 2.25 (equilateral triangle side) | 2 × 8 + 8 | 11,789 |
LB | 24 | 16 | 53 | 30 | 3.46 (equilateral triangle side) | 2 × 10 + 8 | 9582 |
LS | 38 | 22 | 89 | 52 | 2.60 (equilateral triangle side) | 2 × 8 + 8 | 10,841 |
Random Variable | Performance Function | Mean RMSEmod | Approximation Base POa | Approximation Group Formula | Response Function Group Number |
---|---|---|---|---|---|
e | ug | 38.74 | 1 | 1 | |
ul | 37.13 | 1 | 2 | ||
ω | 39.10 | 1 | 3 | ||
t | ug | 26.22 | 10 | – | |
25.62 * | 4 | 4 | |||
25.51 | 4 | – | |||
25.40 | 4 | – | |||
ul | 28.02 * | 2 | 5 | ||
ω | 25.66 * | 4 | 6 | ||
σred | 20.16 * | 2 | 7 | ||
l | ug | 22.52 * | 3 | 8 | |
ul | 25.58 * | 3 | 9 | ||
ω | 37.42 | 1 | 10 | ||
σred | 23.11 * | 3 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokusiński, B.; Kamiński, M. On Selecting Composite Functions Based on Polynomials for Responses Describing Extreme Magnitudes of Structures. Appl. Sci. 2021, 11, 10179. https://doi.org/10.3390/app112110179
Pokusiński B, Kamiński M. On Selecting Composite Functions Based on Polynomials for Responses Describing Extreme Magnitudes of Structures. Applied Sciences. 2021; 11(21):10179. https://doi.org/10.3390/app112110179
Chicago/Turabian StylePokusiński, Bartłomiej, and Marcin Kamiński. 2021. "On Selecting Composite Functions Based on Polynomials for Responses Describing Extreme Magnitudes of Structures" Applied Sciences 11, no. 21: 10179. https://doi.org/10.3390/app112110179
APA StylePokusiński, B., & Kamiński, M. (2021). On Selecting Composite Functions Based on Polynomials for Responses Describing Extreme Magnitudes of Structures. Applied Sciences, 11(21), 10179. https://doi.org/10.3390/app112110179