Four-Dimensional Investigation of Gravel Beach Ridge Accretion and 50 Years of Beach Recharge at Dungeness, UK, Using Historic Images, GPR and Lidar (HIGL)
Abstract
:1. Introduction
2. Materials and Methods
GPR
3. Results
3.1. Beach Ridge Patterns
3.2. GPR Interpretation and Radar Facies
3.3. Radar Stratigraphy
4. Discussion
4.1. Definition of the Shoreline on Aerial Photographs and GPR
4.2. Beach Ridge Morphodynamics and Radar Facies
4.3. Estimates of Shingle Accumulation
4.4. Impact of Beach Recharge
4.5. Storms
4.6. Confirmation of Lewis’s Field Observations
4.7. Beach Ridge Truncation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maddrell, R.J. Managed coastal retreat, reducing flood risks and protection costs, Dungeness Nuclear Power Station, UK. Coast. Eng. 1996, 28, 1–15. [Google Scholar] [CrossRef]
- Lewis, W.V. The formation of Dungeness Foreland. Geogr. J. 1932, 80, 309–324. [Google Scholar] [CrossRef]
- Lewis, W.V.; Balchin, W.G.V. Past sea-levels at Dungeness. Geogr. J. 1940, 96, 258–277. [Google Scholar] [CrossRef]
- Eddison, J. The evolution of the barrier beaches between Fairlight and Hythe. Geogr. J. 1983, 149, 39–53. [Google Scholar] [CrossRef]
- Taylor, M.; Stone, G.W. Beach ridges: A review. J. Coast. Res. 1996, 12, 612–621. [Google Scholar]
- Otvos, E.G. Beach ridges—definitions and significance. Geomorphology 2000, 32, 83–108. [Google Scholar] [CrossRef]
- Hesp, P.A. The backshore and beyond. In Handbook of Beach and Shoreface Morphodynamics; Short, A.D., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 1999; pp. 145–169. [Google Scholar]
- Hesp, P.A. Sand Beach ridges: Definitions and redefinition. J. Coast. Res. 2006, 39, 72–75. [Google Scholar]
- Roberts, H.M.; Plater, A.J. Reconstruction of Holocene forland progadation using optically stimulated luminescence dating: An example from Dungeness, UK. Holocene 2007, 17, 495–505. [Google Scholar] [CrossRef]
- Jennings, R.; Schulmeister, J. A field based classification scheme for gravel beaches. Mar. Geol. 2002, 186, 211–228. [Google Scholar] [CrossRef]
- Mason, T.; Bradbury, A.; Poate, T.; Newman, R. Nearshore wave climate of the English Channel–evidence for bi-modal seas. In Proceedings of the 31st International Conference on Coastal Engineering, Hamburg, Germany, 30 August–4 September 2008; 2009; pp. 605–616. [Google Scholar]
- Milburn, C. Regional Shingle Sediment Budget Report: Rye Harbour to Folkstone; East Kent Engineering Partnership, 2013; p. 63. Available online: https://se-coastalgroup.org.uk/media/2019/02/Rye-Harbour-to-Folkestone-Shingle-Sediment-Budget.pdf (accessed on 15 September 2021).
- Van Heteren, S.; Fitzgerald, D.M.; McKinlay, P.A.; Buynevich, I.V. Radar facies of paraglacial barrier systems: Coastal New England, USA. Sedimentology 1998, 45, 181–200. [Google Scholar] [CrossRef]
- Jol, H.M.; Lawton, D.C.; Smith, D.G. Ground penetrating radar: 2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA. Geomorphology 2002, 53, 165–181. [Google Scholar] [CrossRef]
- Neal, A.; Pontee, N.I.; Pye, K.; Richards, J. Internal structure of mixed-sand-and-gravel beach deposits revealed using ground-penetrating radar. Sedimentology 2002, 49, 789–804. [Google Scholar] [CrossRef]
- Buynevich, I.V.; FitzGerald, M.D.; van Heteren, S. Sedimentary records of intense storms in Holocene Barrier sequences. Marine Geology 2004, 210, 135–148. [Google Scholar] [CrossRef]
- Engels, S.; Roberts, M.C. The architecture of prograding sandy gravel beach ridges formed during the last Holocene highstand: Southwestern British Colombia, Canada. J. Sediment. Res. 2005, 75, 1052–1064. [Google Scholar] [CrossRef]
- Bristow, C.S.; Pucillo, K. Quantifying rates of coastal progradation from sediment volume using GPR and OSL: The Holocene fill of Guichen Bay, south-east South Australia. Sedimentology 2006, 53, 769–788. [Google Scholar] [CrossRef]
- Clemmensen, L.B.; Nielsen, L.; Bendixen, M.; Murray, A. Morphology and sedimentary architecture of a beach-ridge system (Anholt, the Kattegat sea): A record of punctuated coastal progradation and sea-level change over the past~1000 years. Boreas 2012, 41, 422–434. [Google Scholar] [CrossRef]
- Dougherty, A.J. Extracting a record of Holocene storm erosion and deposition preserved in the morphostratigraphy of a prograded coastal barrier. Cont. Shelf Res. 2014, 86, 116–131. [Google Scholar] [CrossRef]
- Dougherty, A.J.; Choi, J.-H.; Dosseto, A. Prograded barriers + GPR + OSL = Insights on coastal change over intermediate spatial and temporal scales. J. Coast. Res. 2016, 75, 368–372. [Google Scholar] [CrossRef]
- Tamura, T. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth Sci. Rev. 2012, 114, 279–297. [Google Scholar] [CrossRef]
- Dickson, M.E.; Bristow, C.S.; Hicks, D.M.; Jol, H.; Stapleton, J.; Todd, D. Beach volume on an eroding sand–gravel coast determined using ground penetrating radar. J. Coast. Res. 2009, 25, 1149–1159. [Google Scholar] [CrossRef]
- Arriaga, J.; Falques, A.; Ribas, F.; Crews, E. Formation of shoreline sandwaves on a gravel beach. Ocean. Dyn. 2018, 68, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Beres, M.; Haeni, F.P. Application of ground-penetrating-radar methods in hydrogeologic studies. Ground Water 1991, 21, 375–386. [Google Scholar] [CrossRef]
- Jol, H.M.; Smith, D.G. Ground penetrating radar of northern lacustrine deltas. Can. J. Earth. Sci. 1991, 28, 1939–1947. [Google Scholar] [CrossRef]
- Gawthorpe, R.L.; Collier, R.E.L.; Alexander, J.; Leeder, M.; Bridge, J. Ground-penetrating radar: Application to sandbody geometry and heterogeneity studies. In Characterisation of Fluvial and Aeolian Reservoirs. Geological Society London, Special Publication; North, C.P., Prosser, D.J., Eds.; The Geological Society: London, UK, 1993; Volume 73, pp. 421–432. [Google Scholar]
- Jol, H.M.; Bristow, C.S. GPR in sediments: Advice on data collection, basic processing and interpretation, a good practice guide. Geol. Soc. Lond. Spec. Publ. 2003, 211, 9–27. [Google Scholar] [CrossRef]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Bjornsen, M.; Clemmensen, L.; Murray, A.; Pedersen, K. New evidence for the Littorina transgressions in the Kattegat: Optically stimulated luminescence dating of a beach ridge system on Anholt, Denmark. Boreas 2007, 37, 157–168. [Google Scholar] [CrossRef]
- Clemmensen, L.B.; Nielsen, L. Internal architecture of a raised beach ridge system (Anholt, Denmark) resolved by ground-penetrating radar investigations. Sediment. Geol. 2010, 223, 281–290. [Google Scholar] [CrossRef]
- Billy, J.; Robin, N.; Hein, C.J.; Certain, R.; FitzGerald, D.M. Internal architecture of mixed sand-and-gravel beach ridges: Miquelon-Langlade Barrier, NW Atlantic. Mar. Geol. 2014, 357, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.W.G. The morphodynamics of beach-ridge formation: Magilligan, Northern Ireland. Mar. Geol. 1986, 73, 191–214. [Google Scholar] [CrossRef]
- Zong, Y.; Tooley, M.J. A historical record of coastal floods in Britain: Frequencies and associated storm tracks. Nat. Hazards 2003, 29, 13–36. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J. (Ed.) The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (Station-Based). April 2020. Available online: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based (accessed on 9 September 2021).
- Nott, J.F. Intensity of prehistoric tropical cyclones. J. Geophys. Res. 2003, 108, 4212. [Google Scholar] [CrossRef]
- Nott, J.F. Sand beach ridges record 6000 year history of extreme tropical cyclone activity in northeastern Australia. Quat. Sci. Rev. 2011, 30, 713–722. [Google Scholar] [CrossRef]
- Goslin, J.; Clemmensen, L.B. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers. Quat. Sci. Rev. 2017, 174, 80–119. [Google Scholar] [CrossRef]
- Oliver, T.S.N.; Tamura, T.; Hudson, J.P.; Woodroffe, C.D. Integrating millennial and interdecadal shoreline changes: Morpho-sedimentary investigation of two prograded barriers in southeastern Australia. Geomorphology 2017, 288, 129–147. [Google Scholar] [CrossRef] [Green Version]
Progradation | Beach 1 | Beach 2 | Beach 3 | Beach 4 | Beach 5 | Beach 6 | Beach 7 |
---|---|---|---|---|---|---|---|
1940–1960 (m) | 40 | 30 | 27 | 28 | 28 | 26 | 29 |
1960–1990 (m) | 48 | 33 | 21 | 14 | 22 | 14 | −5 |
1990–2006 (m) | 48 | 43 | 25 | 27 | 26 | 34 | 19 |
2006–2019 (m) | 11 | 20 | 16 | 11 | 9 | 16 | 25 |
Total 1940–2019 (m) | 146 | 120 | 89 | 81 | 84 | 90 | 69 |
Progradation rate 1940–2019 (m/year) | 1.85 | 1.73 | 1.13 | 1.03 | 1.06 | 1.14 | 0.86 |
Cross-Section of Beach from GPR (m2) | Increased Width of Beach from Historic Images (m) (1940–2019) | Average Thickness of Shingle at Each Profile Derived by Dividing the Cross-Section Area by the Change in Beach Width (m) | |
---|---|---|---|
Beach 1 | 758 | 146 | 5.19 |
Beach 2 | 584 | 120 | 4.85 |
Beach 3 | 476 | 89 | 5.35 |
Beach 4 | 402 | 81 | 4.96 |
Beach 5 | 393 | 84 | 4.68 |
Beach 6 | 405 | 90 | 4.5 |
Beach 7 | 278 | 68 | 4.09 |
Area of Accretion (m2) | Accretion Rate (m2/year) | Progradation Rate (m/year) | Volume of Beach Accretion (m3) | Average Annual Volume of Beach Accretion (m3/year) | Mass of Shingle (Tonnes) | Rate of Beach Accretion (Tonnes/year) | |
---|---|---|---|---|---|---|---|
1940–1960 | 83,000 | 4150 | 1.40 | 398,390 | 19,920 | 717,090 | 35,860 |
1960–1990 | 66,730 | 2220 | 0.75 | 318,580 | 10,620 | 573,440 | 19,120 |
1990–2006 | 89,500 | 5590 | 1.88 | 429,610 | 26,850 | 773,310 | 48,330 |
2006–2019 | 43,200 | 3320 | 1.12 | 207,360 | 15,950 | 373,240 | 28,710 |
1940–2019 | 282,430 | 3580 | 1.20 | 1,355,660 | 17,160 | 2,440,190 | 30,890 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bristow, C.S.; Buck, L.; Inggrid, M. Four-Dimensional Investigation of Gravel Beach Ridge Accretion and 50 Years of Beach Recharge at Dungeness, UK, Using Historic Images, GPR and Lidar (HIGL). Appl. Sci. 2021, 11, 10219. https://doi.org/10.3390/app112110219
Bristow CS, Buck L, Inggrid M. Four-Dimensional Investigation of Gravel Beach Ridge Accretion and 50 Years of Beach Recharge at Dungeness, UK, Using Historic Images, GPR and Lidar (HIGL). Applied Sciences. 2021; 11(21):10219. https://doi.org/10.3390/app112110219
Chicago/Turabian StyleBristow, Charlie S., Lucy Buck, and Maria Inggrid. 2021. "Four-Dimensional Investigation of Gravel Beach Ridge Accretion and 50 Years of Beach Recharge at Dungeness, UK, Using Historic Images, GPR and Lidar (HIGL)" Applied Sciences 11, no. 21: 10219. https://doi.org/10.3390/app112110219
APA StyleBristow, C. S., Buck, L., & Inggrid, M. (2021). Four-Dimensional Investigation of Gravel Beach Ridge Accretion and 50 Years of Beach Recharge at Dungeness, UK, Using Historic Images, GPR and Lidar (HIGL). Applied Sciences, 11(21), 10219. https://doi.org/10.3390/app112110219