In Vitro Genotoxicity Assessment from the Glycyrrhiza New Variety Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Wongam
2.3. Experimental Animals
2.4. In Vitro AMES Test
2.5. In Vitro Chromosome Aberration Test
2.6. In Vivo Mouse Bone Marrow Micronucleus Test
2.7. Statistical Analyses
2.7.1. In Vitro AMES Test
2.7.2. In Vitro Chromosome Aberration Test
2.7.3. In Vivo Mouse Bone Marrow Micronucleus Test
3. Results
3.1. In Vitro AMES Test
3.2. In Vitro Chromosome Aberration Test
3.3. In Vivo Mouse Bone Marrow Micronucleus Test
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abudayyak, M.; Nath, E.Ö.; Özhan, G. Toxic potentials of ten herbs commonly used for aphrodisiac effect in Turkey. Turk. J. Med. Sci. 2015, 45, 496–506. [Google Scholar] [CrossRef]
- Bernacchi, F.; Ponzanelli, I.; Minunni, M.; Falezza, A.; Loprieno, N.; Barale, R. In vivo cytogenetic effects of natural humic acid. Mutagenesis 1996, 11, 467–469. [Google Scholar] [CrossRef]
- Boriollo, M.F.G.; Alves, V.E.; Silva, T.A.; Silva, J.J.; Barros, G.B.S.; Dias, C.T.S.; Höfling, J.F.; Oliveira, N.M.S. Decrease of the DXR-induced genotoxicity and nongenotoxic effects of theobroma cacao revealed by micronucleus assay. Braz. J. Biol. 2021, 81, 268–277. [Google Scholar] [CrossRef]
- Brusick, D.J.; Simmon, V.F.; Rosenkranz, H.S.; Ray, V.A.; Stafford, R.S. An evaluation of the Escherichia coli WP2 and WP2uvrA reverse mutation assay. Mutat. Res. 1980, 76, 169–190. [Google Scholar] [CrossRef]
- Chandrasekaran, C.V.; Sundarajan, K.; Gupta, A.; Srikanth, H.S.; Edwin, J.; Agarwal, A. Evaluation of the genotoxic potential of standardized extract of Glycyrrhiza glabra (GutGardTM). Regul. Toxicol. Pharmacol. 2011, 61, 373–380. [Google Scholar] [CrossRef]
- Cho, M.J.; Kim, J.H.; Park, C.H.; Lee, A.Y.; Shin, Y.S.; Lee, J.H.; Park, C.G.; Cho, E.J. Comparison of the effect of three licorice varieties on cognitive improvement via an amelioration of neuroinflammation in lipopolysaccharide-induced mice. Nutr. Res. Pract. 2018, 12, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Cortés, F.; Mateos, S.; Pastor, N.; Domínguez, I. Toward a comprehensive model for induced endoreduplication. Life Sci. 2004, 76, 121–135. [Google Scholar] [CrossRef] [PubMed]
- da Costa, K.C.S.; Bezerra, S.B.; Norte, C.M.; Nunes, L.M.N.; de Olinda, T.M. Medicinal plants with teratogenic potential: Current considerations. Braz. J. Pharm. Sci. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Rashid, K.A.; Ercegovich, C.D.; Mumma, R.O. Evaluation of Chlordimeform and Degradation Products for Mutagenic and Dna-Damaging Activity in Salmonella typhimurium and Escherichia coli. J. Environ. Sci. Health Part B 1984, 19, 95–110. [Google Scholar] [CrossRef]
- Fateh, A.H.; Mohamed, Z.; Chik, Z.; Alsalahi, A.; Md Zain, S.R.; Alshawsh, M.A. Mutagenicity and genotoxicity effects of Verbena officinalis leaves extract in Sprague-Dawley Rats. J. Ethnopharmacol. 2019, 235, 88–99. [Google Scholar] [CrossRef]
- Gadano, A.B.; Gurni, A.A.; Carballo, M.A. Argentine folk medicine: Genotoxic effects of Chenopodiaceae family. J. Ethnopharmacol. 2006, 103, 246–251. [Google Scholar] [CrossRef]
- Green, M.H.L.; Muriel, W.J. Mutagen testing using TRP+ reversion in Escherichia coli. Mutat. Res. 1976, 38, 3–32. [Google Scholar] [CrossRef]
- Hayashi, H.; Hosono, N.; Kondo, M.; Hiraoka, N.; Ikeshiro, Y.; Shibano, M.; Kusano, G.; Yamamoto, H.; Tanaka, T.; Inoue, K. Phylogenetic relationship of six Glycyrrhiza species based on rbcL sequences and chemical constituents. Biol. Pharm. Bull. 2000, 23, 602–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, M.; Sofuni, T.; Ishidate, M. An application of Acridine Orange fluorescent staining to the micronucleus test. Mutat. Res. 1983, 120, 241–247. [Google Scholar] [CrossRef]
- Heddle, J.A.; Stuart, E.; Salamone, M.F. The Bone Marrow Micronucleus Test in Handbook of Mutagenicity Test Procedures; Elsevier: New York, NY, USA, 1984; pp. 441–457. [Google Scholar]
- Hwang, Y.-H.; Kim, T.; Cho, W.-K.; Yang, H.J.; Kwak, D.H.; Ha, H.; Song, K.H.; Ma, J.Y. In vitro and in vivo genotoxicity assessment of aristolochia manshuriensis Kom. Evid. Based Complement. Altern. Med. 2012, 2012, 412736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishidate, M.; Harnois, M.C.; Sofuni, T. A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell cultures. Mutat. Res. 1988, 195, 151–213. [Google Scholar] [CrossRef]
- Ishidate, M.; Sofuni, T.; Yoshikawa, K.; Hayashi, M.; Nohmi, T.; Sawada, M.; Matsuoka, A. Primary mutagenicity screening of food additives currently used in Japan. Food Chem. Toxicol. 1984, 22, 623–636. [Google Scholar] [CrossRef]
- Kang, S.-H.; Song, Y.-J.; Jeon, Y.-D.; Kim, D.-K.; Park, J.-H.; Soh, J.-R.; Lee, J.-H.; Kitalong, C.; Kim, W.; An, H.-J.; et al. Comparative study of anti-inflammatory effect on dssinduced ulcerative colitis between novel glycyrrhiza variety and official compendia. Appl. Sci. 2021, 11, 1545. [Google Scholar] [CrossRef]
- Kang, Y.-M.; Kim, W.; Jin, J.-S.; Lee, J.-H.; Chang, J.K.; Lee, J.; An, H.-J. The Comparative Study of Immunomodulatory Effect by Glycyrrhiza New Varieties and Official Compendia. Korean J. Herbol. 2020, 35, 11–19. [Google Scholar]
- Kang, Y.-M.; Kim, W.; Jin, J.-S.; Lee, J.-H.; Chang, J.K.; Lee, J.; An, H.-J. The Comparative Study of Anti-allergic Effect by Glycyrrhiza New Varieties and Official Compendia. Korean J. Herbol. 2020, 35, 13–21. [Google Scholar]
- Kaur, R.; Kaur, H.; Dhindsa, A.S. Glycyrrhiza glabra: A phytopharmacological review. Int. J. Pharm. Sci. Res. 2013, 4, 2470–2477. [Google Scholar] [CrossRef]
- Kocaman, A.Y.; Güzelkokar, M. The genotoxic and antigenotoxic potential of the methanolic root extract of Glycyrrhiza glabra L. on human peripheral blood lymphocytes. Drug Chem. Toxicol. 2018, 41, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, I. Licorice root. A natural sweetener and an important ingredient in Chinese medicine. Pure Appl. Chem. 2002, 74, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Zan, M.A.; Ferraz, A.B.F.; Richter, M.F.; Picada, J.N.; de Andrade, H.H.R.; Lehmann, M.; Dihl, R.R.; Nunes, E.; Semedo, J.; Da Silva, J. In Vivo Genotoxicity Evaluation of an Artichoke (Cynara scolymus L.) Aqueous Extract. J. Food Sci. 2013, 78, T367–T371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, Y.; Lin, X.; Yang, J.; Wu, C. Assessment of reproductive toxicity and genotoxicity of Aconiti Lateralis Radix Praeparata and its processed products in male mice. J. Ethnopharmacol. 2021, 275, 114102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ye, M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A 2009, 1216, 1954–1969. [Google Scholar] [CrossRef]
- Zhou, J.; Ouedraogo, M.; Qu, F.; Duez, P. Potential genotoxicity of traditional Chinese medicinal plants and phytochemicals: An overview. Phytother. Res. 2013, 27, 1745–1755. [Google Scholar] [CrossRef]
- Sparrow, S.S.; Robinson, S.; Bolam, S.; Bruce, C.; Danks, A.; Everett, D.; Fulcher, S.; Hill, R.E.; Palmer, H.; Scott, E.W.; et al. Opportunities to minimise animal use in pharmaceutical regulatory general toxicology: A cross-company review. Regul. Toxicol. Pharmacol. 2011, 61, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Suzuki, H.; Ushida, K.; Matsumoto, M.; Inoue, K.; Kanno, T.; Miwa, Y.; Ishii, T.; Nagase, T.; Katsumata, Y.; et al. Initial hazard assessment of 1,4-dichlorobutane: Genotoxicity tests, 28-day repeated-dose toxicity test, and reproductive/developmental toxicity screening test in rats. Regul. Toxicol. Pharmacol. 2020, 112, 104610. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-G.; Lee, J.; Kim, W.; An, H.-J.; Lee, J.-H.; Chang, J.; Kang, S.-H.; Song, Y.-J.; Jeon, Y.-D.; Jin, J.-S. Assessment of General Toxicity of the Glycyrrhiza New Variety Extract in Rats. Plants 2021, 10, 1126. [Google Scholar] [CrossRef] [PubMed]
- Kirsch-Volders, M.; Sofuni, T.; Aardema, M.; Albertini, S.; Eastmond, D.; Fenech, M.; Ishidate, M.; Kirchner, S.; Lorge, E.; Morita, T.; et al. Report from the in vitro micronucleus assay working group. Mutat. Res. 2003, 540, 153–163. [Google Scholar] [CrossRef]
- Kondo, K.; Shiba, M.; Nakamura, R.; Morota, T.; Shoyama, Y. Constituent properties of licorices derived from Glycyrrhiza uralensis, G. glabra, or G. inflata identified by genetic information. Biol. Pharm. Bull. 2007, 30, 1271–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Oh, M.-W.; Lee, S.-H.; Park, C.-G.; Jeong, J.-T.; Han, J.-W.; Ma, K.-H.; Chang, J.-K. “Wongam”, a Licorice Interspecific Hybrid Cultivar with High Yield. Korean J. Breed. Sci. 2020, 52, 454–459. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Seo, C.-S.; Ha, H.; Park, E.; Kim, J.-Y.; Shin, H.-K. The genotoxicity of an aqueous extract of Gyejibokryeong-hwan. BMC Complement. Altern. Med. 2018, 18, 21. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.E.; Hwang, H.J.; Ha, J.-S.; Jeong, H.-S.; Kim, J.H. Screening of medicinal plant extracts for antioxidant activity. Life Sci. 2003, 73, 167–179. [Google Scholar] [CrossRef]
- Li, Y.; Kandhare, A.D.; Mukherjee, A.A.; Bodhankar, S.L. Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regul. Toxicol. Pharmacol. 2019, 105, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Mamedov, N.A.; Egamberdieva, D. Phytochemical constituents and pharmacological effects of licorice: A review. Plant Hum. Health 2019, 3, 1–21. [Google Scholar]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Mochida, K.; Sakurai, T.; Seki, H.; Yoshida, T.; Takahagi, K.; Sawai, S.; Uchiyama, H.; Muranaka, T.; Saito, K. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 2017, 89, 181–194. [Google Scholar] [CrossRef]
- Nakagawa, K.; Hidaka, T.; Kitano, M.; Asakura, M.; Kamigaito, T.; Noguchi, T.; Hosoe, K. Genotoxicity studies on licorice flavonoid oil (LFO). Food Chem. Toxicol. 2008, 46, 2525–2532. [Google Scholar] [CrossRef]
- Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of glycyrrhiza sp. and its bioactive compounds. Phytother. Res. 2008, 22, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Obe, G.; Pfeiffer, P.; Savage, J.R.K.; Johannes, C.; Goedecke, W.; Jeppesen, P.; Natarajan, A.T.; Martínez-López, W.; Folle, G.A.; Drets, M.E. Chromosomal aberrations: Formation, identification and distribution. Mutat. Res. 2002, 504, 17–36. [Google Scholar] [CrossRef]
- OECD. OECD Test No. 471: Bacterial Reverse Mutation Test; Organization Economic Co-Operation Development Publication: Paris, France, 1997. [Google Scholar] [CrossRef] [Green Version]
- OECD. Guideline for the Testing of Chemicals TG 474 Mammalian Erythrocyte Micronucleus Test; OECD: Paris, France, 2014. [Google Scholar] [CrossRef]
- OECD. OECD Guideline for the Testing of Chemicals Test No. 473: In Vitro Mammalian Chromosomal Aberration Test; Organization Economic Co-Operation Development Publication: Paris, France, 2016. [Google Scholar] [CrossRef]
- Ohtani, K.; Kasai, R.; Yang, C.R.; Yamasaki, K.; Zhou, J.; Tanaka, O. Oleanane glycosides from roots of Glycyrrhiza yunnanensis. Phytochemistry 1994, 36, 139–145. [Google Scholar] [CrossRef]
- Resende, F.A.; Vilegas, W.; Dos Santos, L.C.; Varanda, E.A. Mutagenicity of flavonoids assayed by bacterial reverse mutation (Ames) test. Molecules 2012, 17, 5255–5268. [Google Scholar] [CrossRef]
- Rotblatt, M. Herbal Medicine: Expanded Commission E Monographs; Integrative Medicine Communications: Boston, MA, USA, 2000. [Google Scholar]
- Saravanan, V.; Murugan, S.S.; Kumaravel, T.S. Genotoxicity studies with an ethanolic extract of Kalanchoe pinnata leaves. Mutat. Res. 2020, 2020, 856–857. [Google Scholar] [CrossRef]
- Shibata, S. A drug over the millennia: Pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 2000, 120, 849–862. [Google Scholar] [CrossRef] [PubMed]
Test Strain | Chemical Treated | Dose (µg/Plate) | Colonies/Plate [Factor] (a) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
With S9 Mix | Without S9 Mix | |||||||||
TA100 | WG | 0 | 126 | ± | 8 | 113 | ± | 3 | ||
50 | 136 | ± | 1 | [1.1] | 108 | ± | 2 | [1.0] | ||
150 | 141 | ± | 2 | [1.1] | 114 | ± | 1 | [1.0] | ||
500 | 130 | ± | 2 | [1.0] | 115 | ± | 3 | [1.0] | ||
1500 | 122 | ± | 3 | [1.0] | 107 | ± | 3 | [1.0] | ||
5000 | 151 | ± | 2 | [1.2] | 103 | ± | 2 | [0.9] | ||
TA1535 | WG | 0 | 31 | ± | 2 | 23 | ± | 1 | ||
50 | 31 | ± | 2 | [1.0] | 25 | ± | 3 | [1.1] | ||
150 | 32 | ± | 1 | [1.0] | 24 | ± | 3 | [1.1] | ||
500 | 30 | ± | 1 | [1.0] | 23 | ± | 2 | [1.0] | ||
1500 | 26 | ± | 1 | [0.9] | 23 | ± | 3 | [1.0] | ||
5000 | 35 | ± | 2 | [1.2] | 22 | ± | 2 | [1.0] | ||
TA98 | WG | 0 | 30 | ± | 3 | 23 | ± | 2 | ||
50 | 31 | ± | 1 | [1.0] | 21 | ± | 1 | [0.9] | ||
150 | 28 | ± | 2 | [0.9] | 22 | ± | 2 | [0.9] | ||
500 | 29 | ± | 1 | [1.0] | 22 | ± | 2 | [1.0] | ||
1500 | 25 | ± | 1 | [0.8] | 22 | ± | 2 | [0.9] | ||
5000 | 25 | ± | 1 | [0.9] | 25 | ± | 1 | [1.1] | ||
TA1537 | WG | 0 | 15 | ± | 2 | 12 | ± | 2 | ||
50 | 15 | ± | 1 | [1.0] | 9 | ± | 1 | [0.8] | ||
150 | 16 | ± | 2 | [1.0] | 12 | ± | 1 | [1.1] | ||
500 | 16 | ± | 1 | [1.1] | 12 | ± | 1 | [1.0] | ||
1500 | 17 | ± | 2 | [1.1] | 11 | ± | 2 | [1.0] | ||
5000 | 17 | ± | 2 | [1.2] | 14 | ± | 2 | [1.2] | ||
E. coli WP2 uvrA | WG | 0 | 23 | ± | 2 | 22 | ± | 1 | ||
50 | 24 | ± | 1 | [1.0] | 19 | ± | 1 | [0.9] | ||
150 | 25 | ± | 1 | [1.1] | 19 | ± | 2 | [0.9] | ||
500 | 24 | ± | 1 | [1.0] | 25 | ± | 2 | [1.1] | ||
1500 | 22 | ± | 2 | [1.0] | 25 | ± | 2 | [1.2] | ||
5000 | 26 | ± | 3 | [1.1] | 24 | ± | 2 | [1.1] | ||
Positive Controls | ||||||||||
TA100 | 2-AA | 1.0 | 2896 | ± | 150 | [23] | ||||
TA1535 | 2-AA | 2.0 | 340 | ± | 34 | [11.1] | ||||
TA98 | B[a]P | 1.0 | 276 | ± | 10 | [9.3] | ||||
TA1537 | 2-AA | 1.0 | 197 | ± | 22 | [13.1] | ||||
WP2 uvrA | 2-AA | 6.0 | 162 | ± | 13 | [7.1] | ||||
TA100 | SA | 0.5 | 358 | ± | 29 | [3.2] | ||||
TA1535 | SA | 0.5 | 358 | ± | 25 | [15.8] | ||||
TA98 | 2-NF | 2.0 | 360 | ± | 9 | [15.4] | ||||
TA1537 | ICR-191 | 0.5 | 126 | ± | 10 | [10.8] | ||||
WP2 uvrA | 4NQO | 0.5 | 189 | ± | 7 | [8.7] |
Dose (µg/mL) | Time (h) | S9 Mix | Observed Cells | Percentage of Cells Showing Aberrations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chromosome Type | Chromatid Type | Others | Gaps | No. Aberrant Metaphase (a) | PP + ER | RICC(%) | |||||||
csb | cse | ctb | cte | +Gaps | −Gaps | ||||||||
0 | 6 + 18 | + | 150 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.33 | 0.33 | 1 | 100 |
350 | 6 + 18 | + | 150 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.33 | 0.33 | 0.33 | 91 |
700 | 6 + 18 | + | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1 | 85 |
1400 T | 6 + 18 | + | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.67 | 85 |
Positive Control | |||||||||||||
B[a]P 20 | 6 + 18 | + | 150 | 0.0 | 1.0 | 8.0 | 33.5 | 0.0 | 1.5 | 17.67 | 17.67 ** | 0 | 69 |
0 | 6 − 18 | − | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1 | 100 |
350 | 6 − 18 | − | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.67 | 101 |
700 | 6 − 18 | − | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.33 | 99 |
1400 T | 6 − 18 | − | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.33 | 95 |
Positive Control | |||||||||||||
4NQO 0.4 | 6 − 18 | − | 150 | 0.0 | 0.0 | 1.5 | 12.5 | 2.0 | 0.5 | 6.33 | 6.33 ** | 0.33 | 77 |
0 | 24 − 0 | − | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.67 | 100 |
250 | 24 − 0 | − | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 92 |
500 | 24 − 0 | − | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.33 | 79 |
1000 | 24 − 0 | − | 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.33 | 0 | 0.33 | 50 |
1100 | 24 − 0 | − | 150 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.5 | 0.67 | 0.33 | 1 | 47 |
Positive Control | |||||||||||||
4NQO 0.4 | 24 − 0 | − | 150 | 0.0 | 0.5 | 3.0 | 10.0 | 2.0 | 0.0 | 6.33 | 6.33 ** | 1 | 64 |
Dose (mg/kg/Day) | Animals per Dose | Body Weight (g) at the Time of | MNPCE/4000PCE (Mean ± SD) | PCE:RBC Ratio (Mean ± SD) | (% Control) | ||
---|---|---|---|---|---|---|---|
Day 0 | Day 1 | Sacrifice | |||||
0 | 6 | 35.34 ± 0.96 | 35.34 ± 1.61 | 35.43 ± 1.40 | 3.83 ± 1.47 | 0.52 ± 0.02 | 100 |
1250 | 6 | 35.09 ± 1.21 | 34.35 ± 1.32 | 33.78 ± 2.18 | 3.33 ± 2.16 | 0.52 ± 0.03 | 100 |
2500 | 6 | 34.98 ± 1.16 | 34.93 ± 1.25 | 34.81 ± 1.12 | 4.17 ± 1.47 | 0.52 ± 0.03 | 100 |
5000 | 6 | 34.75 ± 1.36 | 34.99 ± 1.41 | 35.25 ± 1.61 | 4.00 ± 1.79 | 0.53 ± 0.02 | 102 |
Positive Control | |||||||
CPA 70 | 6 | 34.63 ± 1.23 | 35.08 ± 1.21 | 35.26 ± 1.29 | 62.17 ± 8.80 ** | 0.41 ± 0.03 ** | 78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.-J.; Kim, D.-G.; Lee, J.; Kim, W.; An, H.-J.; Lee, J.-H.; Jeon, Y.-D.; Chang, J.; Kang, S.-H.; Soh, J.-R.; et al. In Vitro Genotoxicity Assessment from the Glycyrrhiza New Variety Extract. Appl. Sci. 2021, 11, 10257. https://doi.org/10.3390/app112110257
Song Y-J, Kim D-G, Lee J, Kim W, An H-J, Lee J-H, Jeon Y-D, Chang J, Kang S-H, Soh J-R, et al. In Vitro Genotoxicity Assessment from the Glycyrrhiza New Variety Extract. Applied Sciences. 2021; 11(21):10257. https://doi.org/10.3390/app112110257
Chicago/Turabian StyleSong, Young-Jae, Dong-Gu Kim, Jeonghoon Lee, Wonnam Kim, Hyo-Jin An, Jong-Hyun Lee, Yong-Deok Jeon, Jaeki Chang, Sa-Haeng Kang, Ju-Ryoun Soh, and et al. 2021. "In Vitro Genotoxicity Assessment from the Glycyrrhiza New Variety Extract" Applied Sciences 11, no. 21: 10257. https://doi.org/10.3390/app112110257
APA StyleSong, Y. -J., Kim, D. -G., Lee, J., Kim, W., An, H. -J., Lee, J. -H., Jeon, Y. -D., Chang, J., Kang, S. -H., Soh, J. -R., & Jin, J. -S. (2021). In Vitro Genotoxicity Assessment from the Glycyrrhiza New Variety Extract. Applied Sciences, 11(21), 10257. https://doi.org/10.3390/app112110257