Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews
Abstract
:1. Introduction
2. Related Literature
2.1. Online Customer Reviews Analysis
2.2. Occupancy Rate Forecast
3. Long Short-Term Memory Networks
4. The Proposed Hotel Occupancy Forecasting Architecture
4.1. Data Collection
4.2. Data Preprocessing
4.3. Modeling and Testing
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kimes, S.E.; Chase, R.B.; Choi, S.; Lee, P.Y.; Ngonzi, E.N. Restaurant Revenue Management. Cornell Hotel Restaur. Adm. Q. 1998, 39, 32–39. [Google Scholar] [CrossRef]
- Wu, D.C.; Song, H.; Shen, S. New developments in tourism and hotel demand modeling and forecasting. Int. J. Contemp. Hosp. Manag. 2017, 29, 507–529. [Google Scholar] [CrossRef]
- Salehan, M.; Kim, D.J. Predicting the performance of online customer reviews: A sentiment mining approach to big data analytics. Decis. Support Syst. 2016, 81, 30–40. [Google Scholar] [CrossRef]
- De Pelsmacker, P.; van Tilburg, S.; Holthof, C. Digital marketing strategies, online reviews and hotel performance. Int. J. Hosp. Manag. 2018, 72, 47–55. [Google Scholar] [CrossRef]
- Anagnostopoulou, S.C.; Buhalis, D.; Kountouri, I.L.; Manousakis, E.G.; Tsekrekos, A.E. The impact of online reputation on hotel profitability. Int. J. Hosp. Manag. 2020, 32, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Teichert, T.; Rossi, M.; Li, H.; Hu, F. Big data for big insights: Investigating language-specific drivers of hotel satisfaction with 412,784 user-generated reviews. Tour. Manag. 2017, 59, 554–563. [Google Scholar] [CrossRef]
- Fernandes, E.; Moro, S.; Cortez, P.; Batista, F.; Ribeiro, R. A data-driven approach to measure restaurant performance by combining online reviews with historical sales data. Int. J. Hosp. Manag. 2020, 94, 102830. [Google Scholar] [CrossRef]
- Phillips, P.; Zigan, K.; Silva, M.M.S.; Schegg, R. The interactive effects of online reviews on the determinants of Swiss hotel performance: A neural network analysis. Tour. Manag. 2015, 50, 130–141. [Google Scholar] [CrossRef]
- Morente-Molinera, J.; Kou, G.; Pang, C.; Cabrerizo, F.; Herrera-Viedma, E. An automatic procedure to create fuzzy ontologies from users’ opinions using sentiment analysis procedures and multi-granular fuzzy linguistic modelling methods. Inf. Sci. 2018, 476, 222–238. [Google Scholar] [CrossRef]
- Hu, N.; Koh, N.S.; Reddy, S.K. Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales. Decis. Support Syst. 2013, 57, 42–53. [Google Scholar] [CrossRef]
- Zhang, S.T.; Wang, F.F.; Duo, F.; Zhang, J.L. Research on the Majority Decision Algorithm based on WeChat sentiment classification. J. Intell. Fuzzy Syst. 2018, 35, 2975–2984. [Google Scholar] [CrossRef]
- Li, X.; Law, R.; Xie, G.; Wang, S. Review of tourism forecasting research with internet data. Tour. Manag. 2020, 83, 104245. [Google Scholar] [CrossRef]
- Zhang, B.; Pu, Y.; Wang, Y.; Li, J. Forecasting Hotel Accommodation Demand Based on LSTM Model Incorporating Internet Search Index. Sustainability 2019, 11, 4708. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Wu, D.C.; Song, H. Forecasting hotel room demand using search engine data. J. Hosp. Tour. Technol. 2012, 3, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Yang, Y. Forecasting Destination Weekly Hotel Occupancy with Big Data. J. Travel Res. 2016, 56, 957–970. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Pan, B.; Song, H. Predicting Hotel Demand Using Destination Marketing Organization’s Web Traffic Data. J. Travel Res. 2013, 53, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Bigne, E.; Oltra, E.; Andreu, L. Harnessing stakeholder input on twitter: A case study of short breaks in Spanish tourist cities. Tour. Manag. 2019, 71, 490–503. [Google Scholar] [CrossRef]
- Aliyev, R.; Salehi, S.; Aliyev, R. Development of fuzzy time series model for hotel occupancy forecasting. Sustainability 2019, 11, 793. [Google Scholar] [CrossRef] [Green Version]
- Ampountolas, A. Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models. Forecasting 2021, 3, 580–595. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Pan, B.; Zhang, G. Weekly Hotel Occupancy Forecasting of a Tourism Destination. Sustainability 2018, 10, 4351. [Google Scholar] [CrossRef] [Green Version]
- Ginindza, S.; Tichaawa, T.M. The impact of sharing accommodation on the hotel occupancy rate in the kingdom of Swaziland. Curr. Issues Tour. 2017, 22, 1975–1991. [Google Scholar] [CrossRef]
- Fiori, A.M.; Foroni, I. Reservation Forecasting Models for Hospitality SMEs with a View to Enhance Their Economic Sustainability. Sustainability 2019, 11, 1274. [Google Scholar] [CrossRef] [Green Version]
- Assaf, A.G.; Tsionas, M.G. Forecasting occupancy rate with Bayesian compression methods. Ann. Tour. Res. 2019, 75, 439–449. [Google Scholar] [CrossRef]
- Al Shehhi, M.; Karathanasopoulos, A. Forecasting hotel room prices in selected GCC cities using deep learning. J. Hosp. Tour. Manag. 2019, 42, 40–50. [Google Scholar] [CrossRef]
- Zhang, Q.; Qiu, L.; Wu, H.; Wang, J.; Luo, H. Deep Learning Based Dynamic Pricing Model for Hotel Revenue Management. In Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), Beijing, China, 8–11 November 2019. [Google Scholar]
- Sánchez-Medina, A.J.; C.-Sánchez, E. Using machine learning and big data for efficient forecasting of hotel booking cancellations. Int. J. Hosp. Manag. 2020, 89, 102546. [Google Scholar] [CrossRef]
- Wang, J.; Duggasani, A. Forecasting hotel reservations with long short-term memory-based recurrent neural networks. Int. J. Data Sci. Anal. 2018, 9, 77–94. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, W. Novel deep learning approach for forecasting daily hotel demand with agglomeration effect. Int. J. Hosp. Manag. 2021, 98, 103038. [Google Scholar] [CrossRef]
- Das, R.; Chadha, H.; Banerjee, S. Multi-layered market forecast framework for hotel revenue management by continuously learning market dynamics. J. Revenue Pricing Manag. 2021, 20, 351–367. [Google Scholar] [CrossRef]
- Lee, M.; Mu, X.; Zhang, Y. A machine learning approach to improving forecasting accuracy of hotel demand: A comparative analysis of neural networks and traditional models. Issues Inf. Syst. 2020, 21, 12–21. [Google Scholar]
- Phumchusri, N.; Ungtrakul, P. Hotel daily demand forecasting for high-frequency and complex seasonality data: A case study in Thailand. J. Revenue Pricing Manag. 2019, 19, 8–25. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–17808. [Google Scholar] [CrossRef]
- Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep Learning with Long Short-Term Memory for Time Series Prediction. IEEE Commun. Mag. 2019, 57, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.; Jain, A.; Chauhan, D.S. Deep learning via LSTM models for COVID-19 infection forecasting in India. arXiv 2021, preprint. arXiv:2101.11881. [Google Scholar]
- White, T.E.; Rege, M. Sentiment Analysis on Google Cloud Platform. Issues Inf. Syst. 2020, 21, 221–228. [Google Scholar]
- Luo, X.; Zimet, G.; Shah, S. A natural language processing framework to analyse the opinions on HPV vaccination reflected in twitter over 10 years (2008–2017). Hum. Vaccines Immunother. 2019, 15, 1496–1504. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977; ISBN 978-0201076165. [Google Scholar]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
R_s | Positive Reviews | Negative Reviews | P_s | N_s | Lang. |
---|---|---|---|---|---|
9.2 | Clean, spacious room. | Corridors leading to room could … | 0.9 | −0.8 | en |
7.5 | ロケーション抜群 | 施設が古い | 0.9 | −0.9 | ja |
7.9 | 交通特别方便,捷运出来… | 空调声音略有点大 | 0.9 | −0.4 | zh |
9.6 | 중앙역 바로 맞은 편이라… | 특별한 것은 없음. | 0.8 | −0.4 | ko |
7.1 | Hotel très bien placé, … | C’est dommage qu’un si grand… | 0.9 | −0.3 | fr |
10 | ทำเลดีมาก. สดวก | บางครั้งน้ำร้อนไม่ค่อยพอ | 0.8 | −0.2 | th |
7.9 | Ein sehr großes und … | Es waren sehr kalte und… | 0.8 | −0.3 | de |
7.9 | La habitación era muy …. | El desayuno tenía poca oferta … | 0.3 | 0 | es |
7.9 | 早餐好吃,但是幾乎沒什麼… | 衛浴設備過度老舊 | 0.2 | −0.7 | zh-Hant |
Rank | Abbreviations | Boundaries |
---|---|---|
1 | X1 | less than −0.7 |
2 | X2 | more than or equal to −0.7 and less than −0.4 |
3 | X3 | more than or equal to −0.4 and less than −0.1 |
4 | X4 | more than or equal to −0.1 and less than 0.1 |
5 | X5 | more than or equal to 0.1 and less than 0.4 |
6 | X6 | more than or equal to 0.4 and less than 0.7 |
7 | X7 | more than or equal to 0.7 |
Rank | Abbreviations | Boundaries |
---|---|---|
1 | X8 | less than or equal to 6.9 |
2 | X9 | between 7.0 and 7.9 |
3 | X10 | between 8.0 and 8.4 |
4 | X11 | between 8.5 and 8.9 |
5 | X12 | between 9.0 and 9.4 |
6 | X13 | more than or equal to 9.5 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | Y (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 3 | 1 | 2 | 3 | 2 | 7 | 0 | 2 | 0 | 1 | 3 | 5 | 56.23 |
5 | 10 | 3 | 1 | 4 | 6 | 20 | 5 | 4 | 2 | 2 | 3 | 15 | 86.20 |
2 | 5 | 0 | 1 | 2 | 3 | 11 | 1 | 1 | 0 | 1 | 1 | 11 | 45.13 |
5 | 7 | 3 | 1 | 4 | 5 | 12 | 4 | 7 | 1 | 2 | 1 | 9 | 64.90 |
2 | 2 | 1 | 0 | 2 | 1 | 6 | 2 | 2 | 0 | 1 | 1 | 4 | 67.35 |
0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 11.96 |
3 | 4 | 2 | 0 | 2 | 4 | 14 | 3 | 5 | 1 | 2 | 3 | 9 | 74.91 |
0 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | 3 | 77.18 |
4 | 7 | 3 | 1 | 2 | 4 | 14 | 1 | 3 | 0 | 8 | 5 | 8 | 60.81 |
5 | 7 | 5 | 0 | 8 | 8 | 16 | 3 | 4 | 5 | 8 | 2 | 13 | 66.00 |
1 | 2 | 0 | 1 | 0 | 0 | 5 | 3 | 0 | 1 | 0 | 0 | 2 | 19.31 |
Content of Data | Variables | |
---|---|---|
Dataset I | sentiment analysis of review text | X1–X7 |
Dataset II | customers’ rating scores | X8–X13 |
Dataset III | sentiment analysis of review text and customers’ rating scores | X1–X13 |
Model | Parameters | Dataset I | Dataset II | Dataset III |
---|---|---|---|---|
LSTM | Learning rate | 0.020 | 0.029 | 0.016 |
Beta_1 | 0.725 | 0.883 | 0.900 | |
Beta 2 | 0.812 | 0.913 | 0.997 | |
Decay | 0.023 | 0.012 | 0.004 | |
BPNN | Learning rate | 0.900 | 0.200 | 0.100 |
Momentum | 0.500 | 0.800 | 0.800 | |
GRNN | Spread | 0.100 | 0.200 | 0.900 |
LSSVR | γ | 480 | 500 | 350 |
σ | 1 | 50 | 100 | |
RF | Number of trees | 1000 | 1100 | 1050 |
Minimum number of samples to split | 2 | 4 | 4 | |
Minimum number of samples at a leaf node | 1 | 2 | 3 | |
Maximum depth | 50 | 54 | 60 | |
GPR | Kernel bounds | [−11,11]; [−11,11] | [−16,16]; [−11,11] | [−18,18]; [−11,11] |
Datasets | Measurements | Models | |||||
---|---|---|---|---|---|---|---|
LSTM | BPNN | GRNN | LSSVR | RF | GPR | ||
Dataset I | MAPE (%) | 16.618 | 17.391 | 20.254 | 19.449 | 21.747 | 22.447 |
RMSE | 13.221 | 14.698 | 17.364 | 16.494 | 18.753 | 22.043 | |
Dataset II | MAPE (%) | 16.883 | 17.898 | 20.721 | 19.062 | 20.777 | 25.296 |
RMSE | 13.494 | 15.177 | 18.139 | 16.876 | 17.210 | 25.673 | |
Dataset III | MAPE (%) | 16.416 | 17.006 | 19.717 | 18.905 | 21.471 | 21.049 |
RMSE | 13.076 | 13.826 | 17.197 | 16.401 | 17.946 | 20.624 |
Dataset | Measurements | LSTM vs. | ||||
---|---|---|---|---|---|---|
LSSVR | BPNN | GRNN | GPR | RF | ||
Dataset I | Z Value | 4.042 | 3.296 | 4.534 | 7.507 | 5.903 |
Significance | Yes | Yes | Yes | Yes | Yes | |
Positive number | 184 | 188 | 185 | 206 | 192 | |
Negative number | 134 | 130 | 133 | 112 | 126 | |
Dataset II | Z Value | 3.821 | 3.327 | 4.204 | 5.545 | 5.315 |
Significance | Yes | Yes | Yes | Yes | Yes | |
Positive number | 184 | 177 | 180 | 193 | 195 | |
Negative number | 134 | 141 | 138 | 125 | 123 | |
Dataset III | Z Value | 4.065 | 2.783 | 3.164 | 3.849 | 6.052 |
Significance | Yes | Yes | Yes | Yes | Yes | |
Positive number | 194 | 174 | 178 | 179 | 198 | |
Negative number | 124 | 144 | 140 | 139 | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-M.; Chen, C.-H.; Lai, J.-P.; Lin, Y.-L.; Pai, P.-F. Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews. Appl. Sci. 2021, 11, 10291. https://doi.org/10.3390/app112110291
Chang Y-M, Chen C-H, Lai J-P, Lin Y-L, Pai P-F. Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews. Applied Sciences. 2021; 11(21):10291. https://doi.org/10.3390/app112110291
Chicago/Turabian StyleChang, Yu-Ming, Chieh-Huang Chen, Jung-Pin Lai, Ying-Lei Lin, and Ping-Feng Pai. 2021. "Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews" Applied Sciences 11, no. 21: 10291. https://doi.org/10.3390/app112110291
APA StyleChang, Y. -M., Chen, C. -H., Lai, J. -P., Lin, Y. -L., & Pai, P. -F. (2021). Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews. Applied Sciences, 11(21), 10291. https://doi.org/10.3390/app112110291