Sentinel Lymph Node Metastasis on Clinically Negative Patients: Preliminary Results of a Machine Learning Model Based on Histopathological Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data
2.2. Histological Evaluation Procedure
2.3. Statistical Analysis
2.4. Classification Models
2.5. Performance Evaluation
3. Results
3.1. Statistical Analysis Results
3.2. Classification Results on Hold-Out Training Set
3.3. Cluster Analysis on Hold-Out Training Set
3.4. Classification Results on Hold-Out Test Set
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farnsworth, R.H.; Achen, M.G.; Stacker, S.A. The evolving role of lymphatics in cancer metastasis. Curr. Opin. Immunol. 2018, 53, 64–73. [Google Scholar] [CrossRef]
- Nagahashi, M.; Ramachandran, S.; Rashid, O.M.; Takabe, K. Lymphangiogenesis: A new player in cancer progression. World J. Gastroenterol. 2010, 16, 4003–4012. [Google Scholar] [CrossRef] [PubMed]
- Argentiero, A.; de Summa, S.; di Fonte, R.; Iacobazzi, R.M.; Porcelli, L.; da Vià, M.; Brunetti, O.; Azzariti, A.; Silvestris, N.; Solimando, A.G. Gene expression comparison between the lymph node-positive and -negative reveals a peculiar immune microenvironment signature and a theranostic role for WNT targeting in pancreatic ductal adenocarcinoma: A pilot study. Cancers 2019, 11, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egger, M.E.; Stevenson, M.; Bhutiani, N.; Jordan, A.C.; Scoggins, C.R.; Philips, P.; Martin, R.C.; McMasters, K.M. Age and Lymphovascular Invasion Accurately Predict Sentinel Lymph Node Metastasis in T2 elanoma Patients. Ann. Surg. Oncol. 2019, 26, 3955–3961. [Google Scholar] [CrossRef] [PubMed]
- Falck, A.K.; Fernö, M.; Bendahl, P.-O.; Rydén, L. St Gallen molecular subtypes in primary breast cancer and matched lymph node metastases–aspects on distribution and prognosis for patients with luminalAtumours: Results from a prospective randomised trial. BMC Cancer 2013, 13, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, S.-Q.; Zeng, H.-C.; Zhang, F.; Chen, C.; Huang, W.-H.; Pleijhuis, R.G.; Wu, J.-D.; van Dam, G.M.; Zhang, G.-J. A nomogram to predict the probability of axillary lymph node metastasis in early breast cancer patients with positive axillary ultrasound. Sci. Rep. 2016, 6, 21196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Land, S.R.; Kopec, J.A.; Julian, T.B.; Brown, A.M.; Anderson, S.J.; Krag, D.N.; Christian, N.J.; Costantino, J.P.; Wolmark, N.; Ganz, P.A. Patient-reported outcomes in sentinel node-negative adjuvant breast cancer patients receiving sentinel-node biopsy or axillary dissection: National Surgical Adjuvant Breast and Bowel Project phase III protocol B-32. J. Clin. Oncol. 2010, 28, 3929–3936. [Google Scholar] [CrossRef] [PubMed]
- Diotaiuti, S.; de Summa, S.; Altieri, R.; Dantona, C.; Tommasi, S.; di Gennaro, M.; Rubini, G.; Pastena, M.I.; Argentiero, A.; Zito, F.A.; et al. Biomarker phenotyping drives clinical management in axillary sentinel node: A retrospective study on women with primary breast cancer in 2002. Oncol. Lett. 2020, 20, 2469–2476. [Google Scholar] [CrossRef] [PubMed]
- Gruppo di lavoro AIRO per la Patologia Mammaria. Consensus Per L’irradiazione delle Stazioni Linfonodali Mammarie; Associazione Italiana Radioterapia Oncologica: Milano, Italy, 2016. [Google Scholar]
- Early and locally advanced breast cancer: Diagnosis and management. In NICE Guideline NG101, Evidence Reviews; National Institute for Health and Care Excellence: London, UK, 2018.
- Tsujimoto, M.; Nakabayashi, K.; Yoshidome, K.; Kaneko, T.; Iwase, T.; Akiyama, F.; Kato, Y.; Tsuda, H.; Ueda, S.; Sato, K.; et al. One-step Nucleic Acid Amplification for Intraoperative Detection of Lymph Node Metastasis in Breast Cancer Patients. Clin. Cancer Res. 2007, 13, 4807–4816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galimberti, V.; Fontana, S.R.; Maisonneuve, P.; Steccanella, F.; Vento, A.R.; Intra, M.; Luini, A. Sentinel node biopsy after neoadjuvant treatment in breast cancer: Five-year follow-up of patients with clinically node-negative or node-positive disease before treatment. Eur. J. Surg. Oncol. 2016, 42, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.M.; Michalopoulos, N.V.; Williams, N.R.; Davidson, T.; el Sheikh, S.; McDermott, N.; Tran-Dang, M.-A.; Davison, S.; Keshtgar, M.R. Detailed evaluation of one step nucleic acid (OSNA) molecular assay for intra-operative diagnosis of sentinel lymph node metastasis and prediction of non-sentinel nodal involvement: Experience from a London Teaching Hospital. Breast 2014, 23, 378–384. [Google Scholar] [CrossRef]
- Szychta, P.; Westfal, B.; Maciejczyk, R.; Smolarz, B.; Romanowicz, H.; Krawczyk, T.; Zadrożny, M. Intraoperative diagnosis of sentinel lymph node metastases in breast cancer treatment with onestep nucleic acid amplification assay (OSNA). Arch. Med. Sci. 2016, 6, 1239–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanfani, F.; Monterossi, G.; Ghizzoni, V.; Rossi, E.D.; Dinoi, G.; Inzani, F.; Fagotti, A.; Alletti, S.G.; Scarpellini, F.; Nero, C.; et al. One-Step Nucleic Acid Amplification (OSNA): A fast molecular test based on CK19 mRNA concentration for assessment of lymph-nodes metastases in early stage endometrial cancer. PLoS ONE 2018, 13, e0195877. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Abdi, M.A.; Falkson, C. Axillary Management in Breast Cancer Patients: A comprehensive review of the key trials. Clin. Breast Cancer 2018, 18, e1251–e1259. [Google Scholar] [CrossRef]
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of unilateral lymphedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar] [CrossRef]
- Giuliano, A.E.; Hunt, K.K.; Ballman, K.V.; Beitsch, P.D.; Whitworth, P.W.; Blumencranz, P.W.; Leitch, A.M.; Saha, S.; McCall, L.M.; Morrow, M. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: A randomized clinical trial. JAMA 2011, 305, 569–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazo, C.; Kearns, C.; Mooney, C.; Gallagher, W.M. Clinical Decision Support Systems in Breast Cancer: A Systematic Review. Cancers 2020, 12, 369. [Google Scholar] [CrossRef] [Green Version]
- Fanizzi, A.; Pomarico, D.; Paradiso, A.; Bove, S.; Didonna, V.; Diotiaiuti, S.; Giotta, F.; La Forgia, D.; Latorre, A.; Pastena, M.I.; et al. Predicting of Sentinel Lymph Node Status in Breast Cancer Patients with Clinically Negative Nodes: A Validation Study. Cancers 2021, 13, 352. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.lifemath.net/cancer/ (accessed on 15 March 2020).
- Chen, L.L.; Nolan, M.E.; Silverstein, M.J.; Mihm, M.C.; Sober, A.J.; Tanabe, K.K.; Smith, B.L.; Younger, J.; Michaelson, J.S. The impact of primary tumor size, lymph node status, and other prognostic factors on the risk of cancer death. Cancer 2009, 115, 5071–5083. [Google Scholar] [CrossRef] [PubMed]
- Michaelson, J.S.; Chen, L.L.; Silverstein, M.J.; Mihm, M.C.; Sober, A.J.; Tanabe, K.K.; Smith, B.L.; Younger, J. How cancer at the primary site and in the lymph nodes contributes to the risk of cancer death. Cancer 2009, 115, 5095–5107. [Google Scholar] [CrossRef] [PubMed]
- Egner, J.R. AJCC Cancer Staging Manual. J. Am. Med. Assoc. 2010, 304, 1726. [Google Scholar] [CrossRef]
- Coates, A.S.; Winer, E.P.; Goldhirsch, A.; Gelber, R.D.; Gnant, M.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.-J.; Andre, F.; Baselga, J.; et al. Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Ann. Oncol. 2015, 26, 1533e46. [Google Scholar] [CrossRef] [PubMed]
- Tay, T.K.Y.; Thike, A.A.; Pathmanathan, N.; Jara-Lazaro, A.R.; Iqbal, J.; Sng, A.S.H.; Ye, H.S.; Lim, J.C.T.; Koh, V.C.Y.; Tan, J.S.Y.; et al. Using computer assisted image analysis to determine the optimal Ki67 threshold for predicting outcome of invasive breast cancer. Oncotarget 2018, 9, 11619–11630. [Google Scholar] [CrossRef] [Green Version]
- Dudek, A. Silhouette Index as Clustering Evaluation Tool. In Conference of the Section on Classification and Data Analysis of the Polish Statistical Association; Springer: Cham, Switzerland, 2019; pp. 19–33. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Meurer, W.J.; Tolles, J. Logistic regression diagnostics: Understanding how well a model predicts outcomes. JAMA 2017, 317, 1068–1069. [Google Scholar] [CrossRef]
- Zhang, H. The optimality of naive Bayes. AA 2004, 1, 3. [Google Scholar]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Cabioglu, N.; Yazici, M.S.; Arun, B.; Broglio, K.R.; Hortobagyi, G.N.; Price, J.E.; Sahin, A. CCR7 and CXCR4 as Novel Biomarkers Predicting Axillary Lymph Node Metastasis in T1 Breast Cancer. Clin. Cancer Res. 2005, 11, 5686–5693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houvenaeghel, G.; Lambaudie, E.; Classe, J.M.; Mazouni, C.; Giard, S.; Cohen, M.; Faure, C.; Charitansky, H.; Rouzier, R.; Daraï, E.; et al. Lymph node positivity in different early breast carcinoma phenotypes: A predictive model. BMC Cancer 2019, 19, 45. [Google Scholar] [CrossRef]
- Chen, K.; Liu, J.; Li, S.; Jacobs, L. Development of nomograms to predict axillary lymph node status in breast cancer patients. BMC Cancer 2017, 17, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.K.; Kim, M.K.; Kim, J.; Lee, E.; Yoo, T.-K.; Lee, H.-B.; Kang, Y.J.; Kim, J.; Moon, H.-G.; Chang, J.M.; et al. Can we skip intraoperative evaluation of sentinel lymph nodes? Nomogram predicting involvement of three or more axillary lymph nodes before breast cancer surgery. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2017, 49, 1088. [Google Scholar] [CrossRef] [Green Version]
- Bonsang-Kitzis, H.; Mouttet-Boizat, D.; Guillot, E.; Feron, J.G.; Fourchotte, V.; Alran, S.; Pierga, J.-Y.; Cottu, P.; Lerebours, F.; Stevens, D.; et al. Medico-economic impact of MSKCC non-sentinel node prediction nomogram for ER-positive HER2-negative breast cancers. PLoS ONE 2017, 12, e0169962. [Google Scholar] [CrossRef]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, J.L.B.; Kattan, M.W.; Fey, J.V.; Cody, H.S., III; Borgen, P.I.; Van Zee, K.J. Doctor, what are my chances of having a positive sentinel node? A validated nomogram for risk estimation. J. Clin. Oncol. 2007, 25, 3670–3679. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Chen, J.J.; Yang, B.L.; Liu, Z.B.; Huang, X.Y.; Liu, G.Y.; Wu, J. Predicting sentinel lymph node metastasis in a Chinese breast cancer population: Assessment of an existing nomogram and a new predictive nomogram. Breast Cancer Res. Treat. 2012, 135, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Klar, M.; Foeldi, M.; Markert, S.; Gitsch, G.; Stickeler, E.; Watermann, D. Good prediction of the likelihood for sentinel lymph node metastasis by using the MSKCC nomogram in a German breast cancer population. Ann. Surg. Oncol. 2009, 16, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Okuno, J.; Miyake, T.; Sota, Y.; Tanei, T.; Kagara, N.; Naoi, Y.; Shimoda, M.; Shimazu, K.; Kim, S.J.; Noguchi, S. Development of prediction model including microRNA expression for sentinel lymph node metastasis in ER-positive and HER2-negative breast cancer. Ann. Surg. Oncol. 2021, 28, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Feng, Q.; Yang, W.; Lu, Z.; Deng, C.; Zhang, L.; Lian, Z.; Liu, J.; Luo, X.; Pei, S.; et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur. Radiol. 2018, 28, 582–591. [Google Scholar] [CrossRef]
- Luo, J.; Ning, Z.; Zhang, S.; Feng, Q.; Zhang, Y. Bag of deep features for preoperative prediction of sentinel lymph node metastasis in breast cancer. Phys. Med. Biol. 2018, 63, 245014. [Google Scholar] [CrossRef]
- Liu, M.; Mao, N.; Ma, H.; Dong, J.; Zhang, K.; Che, K.; Duan, S.; Zhang, X.; Shi, Y.; Xie, H. Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer. Cancer Imaging 2020, 20, 65. [Google Scholar] [CrossRef]
- Liu, J.; Sun, D.; Chen, L.; Fang, Z.; Song, W.; Guo, D.; Ni, T.; Liu, C.; Feng, L.; Xia, Y.; et al. Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer. Front. Oncol. 2019, 9, 980. [Google Scholar] [CrossRef]
- Fanizzi, A.; Basile, T.M.A.; Losurdo, L.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.; Massafra, R.; Moschetta, M.; et al. A Machine Learning Approach on Multiscale Texture Analysis for Breast Microcalcification Diagnosis. BMC Bioinform. 2020, 21, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanizzi, A.; Basile, T.M.A.; Losurdo, L.; Bellotti, R.; Bottigli, U.; Campobasso, F.; Didonna, V.; Fausto, A.; Massafra, R.; Tagliafico, A.; et al. Ensemble DiscreteWavelet Transform and Gray-Level Co-Occurrence Matrix for Microcalcification Cluster Classification in Digital Mammography. Appl. Sci. 2019, 9, 5388. [Google Scholar] [CrossRef]
- Losurdo, L.; Fanizzi, A.; Basile, T.M.A.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Lorusso, V.; Massafra, R.; Tamborra, P.; et al. Radiomics Analysis on Contrast-Enhanced Spectral Mammography Images for Breast Cancer Diagnosis: A Pilot Study. Entropy 2019, 21, 1110. [Google Scholar] [CrossRef] [Green Version]
- Fanizzi, A.; Losurdo, L.; Basile, T.M.A.; Bellotti, R.; Bottigli, U.; Delogu, P.; Diacono, D.; Didonna, V.; Fausto, A.; Lombardi, A.; et al. Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images. J. Clin. Med. 2019, 8, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, T.M.A.; Fanizzi, A.; Losurdo, L.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.; Massafra, R.; Moschetta, M.; et al. Microcalcification Detection in Full-Field Digital Mammograms: A Fully Automated Computer-Aided System. Phys. Med. 2019, 64, 1–9. [Google Scholar] [CrossRef]
- Fanizzi, A.; Basile, T.M.A.; Losurdo, L.; Bellotti, R.; Tangaro, S.; La Forgia, D.; Didonna, V.; Massafra, R.; Tamborra, P.; Moschetta, M.; et al. Hough transform for microcalcification detection in digital mammograms. Appl. Digit. Image Process. XL 2017, 10396, 41. [Google Scholar] [CrossRef]
- Losurdo, L.; Fanizzi, A.; Basile, T.M.A.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.; Massafra, R.; Monaco, A.; et al. A Combined Approach of Multiscale Texture Analysis and Interest Point/Corner Detectors for Microcalcifications Diagnosis. In Bioinformatics and Biomedical Engineering; IWBBIO 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; pp. 302–313. [Google Scholar] [CrossRef]
- La Forgia, D.; Fanizzi, A.; Campobasso, F.; Bellotti, R.; Didonna, V.; Lorusso, V.; Moschetta, M.; Massafra, R.; Tamborra, P.; Tangaro, S.; et al. Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome. Diagnostics 2020, 10, 708. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, T.; Yang, L.; Wang, Y.; Li, H.; Zhou, X.; Zhao, W.; Ren, J.; Li, X.; Tian, J.; et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using mammography-based radiomics method. Sci. Rep. 2019, 9, 4429. [Google Scholar] [CrossRef] [Green Version]
n Patients | n Positive | n Patients | n Positive | ||
---|---|---|---|---|---|
Overall | 907 | 296 | ER | ||
Age $ | Negative | 94 | 29 | ||
21–40 | 33 | 14 | Positive | 813 | 267 |
41–50 | 128 | 46 | PgR | ||
51–60 | 151 | 50 | Negative | 202 | 65 |
61–70 | 164 | 54 | Positive | 705 | 231 |
71–80 | 114 | 33 | Ki67 * | ||
>80 | 45 | 17 | Negative | 518 | 148 |
Diameter * | Positive | 389 | 148 | ||
T1a | 46 | 6 | HER2/neu | ||
T1b | 191 | 30 | 0 | 676 | 227 |
T1c | 420 | 132 | 1 + | 123 | 33 |
T2 | 250 | 128 | 2 + | 59 | 24 |
Grading * | 3 + | 49 | 12 | ||
G1 | 274 | 62 | Multiplicity § | ||
G2 | 418 | 150 | Negative | 710 | 205 |
G3 | 215 | 84 | Positive | 197 | 91 |
Histologic type § | In situ component | ||||
Ductal | 704 | 246 | Absent | 397 | 133 |
Lobular | 147 | 41 | Present | 510 | 163 |
Special type | 56 | 9 |
Number of Features | RF | Logistic Regression | Naive Bayesan |
---|---|---|---|
2 | Diameter + Multiplicity | Diameter + Age | Diameter + Histologic Type |
3 | +Histologic Type | +Histologic Type | +Her2/Neu |
4 | +Grading | +Grading | +Age |
5 | +In Situ | +Multiplicity | +Grading |
6 | +Ki67 | +In Situ | +Multiplicity |
7 | +Age | +Her2/Neu | +In Situ |
8 | +ER | +PGR | +PGR |
9 | +Her2/Neu | +Ki67 | +ER |
10 | +PgR | +ER | +Ki67 |
Classifier | # Features | AUC (%) | F1 Score | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|
RF | 8 | 68.1 (65.9–68.6) | 54.5 (48.9–59.5) | 67.7 (65.9–68.8) | 57.9 (52.2–61.7) | 72.3 (68.9–76.8) |
Logistic Regression | 7 | 71.5 (71.1–71.7) | 59.2 (55.60–63.7) | 67.9 (66.0–68.7) | 69.4 (67.3–74.3) | 66.9 (61.9–70.0) |
Naïve Bayesian | 7 | 70.8 (70.6–71.0) | 58.4 (54.7–61.8) | 66.3 (65.2–67.6) | 70.6 (66.4–73.0) | 63.9 (61.2–68.0) |
Features | Cluster | 1 | 2 | 3 | |
---|---|---|---|---|---|
n (Pos/Neg) | 164 (66/98) | 207 (70/137) | 264 (96/168) | ||
Histologic Type | Ductal | 152 (92.7%) | 146 (70.5%) | 214 (81.1%) | |
Lobular | 5 (3.1%) | 33 (15.9%) | 29 (11.0%) | ||
Special | 7 (4.3%) | 28 (13.5%) | 21 (8.0%) | ||
Diameter | T1a | 5 (3.1%) | 12 (5.8%) | 14 (5.3%) | |
T1b | 21 (12.8%) | 62 (30.0%) | 42 (15.9%) | ||
T1c | 40 (24.4%) | 94 (45.4%) | 147 (55.7%) | ||
T2 | 98 (59.8%) | 39 (18.8%) | 61 (23.1%) | ||
Age | Median | 57 | 61 | 61 | |
ER | Neg | 61 (37.2%) | 0.0 | 3 (1.1%) | |
Pos | 103 (62.9%) | 207 (100%) | 261 (98.8%) | ||
PgR | Neg | 112 (68.3%) | 20 (9.7%) | 15 (5.7%) | |
Pos | 52 (31.7%) | 187 (90.3%) | 249 (94.3%) | ||
Ki67 | Neg | 13 (7.9%) | 154 (74.4%) | 65 (24.6%) | |
Pos | 151 (92.1%) | 53 (25.6%) | 199 (75.4%) | ||
Grading | G1 | 10 (6.1%) | 130 (62.8%) | 35 (13.3%) | |
G2 | 15 (9.1%) | 71 (34.3%) | 201 (76.1%) | ||
G3 | 139 (84.8%) | 6 (2.9%) | 28 (10.6%) | ||
Her2/Neu | 0 | 93 (56.7%) | 177 (85.5%) | 202 (76.5%) | |
1+ | 19 (11.6%) | 26 (12.6%) | 33 (12.5%) | ||
2+ | 20 (12.2%) | 3 (1.4%) | 23 (8.7%) | ||
3+ | 32 (19.5%) | 1 (0.5%) | 6 (2.3%) | ||
Multiplicity | Neg | 123 (75.0%) | 177 (85.5%) | 192 (72.7%) | |
Pos | 41 (25.0%) | 30 (14.5%) | 72 (27.3%) | ||
In Situ | Neg | 54 (32.9%) | 153 (73.9%) | 59 (22.3%) | |
Pos | 110 (67.1%) | 54 (26.1%) | 205 (77.7%) |
Classifier | # Features | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|
RF | 8 | 63.6 | 52.4 | 68.4 |
Logistic Regression | 7 | 62.1 | 68.3 | 59.7 |
Naïve Bayesian | 7 | 61.8 | 52.4 | 65.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanizzi, A.; Lorusso, V.; Biafora, A.; Bove, S.; Comes, M.C.; Cristofaro, C.; Digennaro, M.; Didonna, V.; Forgia, D.L.; Nardone, A.; et al. Sentinel Lymph Node Metastasis on Clinically Negative Patients: Preliminary Results of a Machine Learning Model Based on Histopathological Features. Appl. Sci. 2021, 11, 10372. https://doi.org/10.3390/app112110372
Fanizzi A, Lorusso V, Biafora A, Bove S, Comes MC, Cristofaro C, Digennaro M, Didonna V, Forgia DL, Nardone A, et al. Sentinel Lymph Node Metastasis on Clinically Negative Patients: Preliminary Results of a Machine Learning Model Based on Histopathological Features. Applied Sciences. 2021; 11(21):10372. https://doi.org/10.3390/app112110372
Chicago/Turabian StyleFanizzi, Annarita, Vito Lorusso, Albino Biafora, Samantha Bove, Maria Colomba Comes, Cristian Cristofaro, Maria Digennaro, Vittorio Didonna, Daniele La Forgia, Annalisa Nardone, and et al. 2021. "Sentinel Lymph Node Metastasis on Clinically Negative Patients: Preliminary Results of a Machine Learning Model Based on Histopathological Features" Applied Sciences 11, no. 21: 10372. https://doi.org/10.3390/app112110372
APA StyleFanizzi, A., Lorusso, V., Biafora, A., Bove, S., Comes, M. C., Cristofaro, C., Digennaro, M., Didonna, V., Forgia, D. L., Nardone, A., Pomarico, D., Tamborra, P., Zito, A., Paradiso, A. V., & Massafra, R. (2021). Sentinel Lymph Node Metastasis on Clinically Negative Patients: Preliminary Results of a Machine Learning Model Based on Histopathological Features. Applied Sciences, 11(21), 10372. https://doi.org/10.3390/app112110372