Progress and Summary of Photodarkening in Rare Earth Doped Fiber
Abstract
:1. Introduction
1.1. Research Progress of Thulium-Doped Fiber (TDF) Photodarkening
1.2. Research Progress of Ytterbium-Doped Fiber (YDF) Photodarkening
2. Mechanism of Photodarkening
3. Phenomena and Problems Caused by Photodarkening
3.1. Change of Absorption Spectrum
3.2. Output Power Reduction
3.3. Temperature Increase
3.4. Mode Instability Threshold Reduction
3.5. Refractive Index Change
3.6. Fluorescence Lifetime Reduction
4. Bleach of Photodarkened Fiber
4.1. Thermal-Bleaching
4.2. Photobleaching
5. Experimental Setup of Photodarkening
5.1. Additional Loss Measuring Device at Characteristic Wavelengths
5.2. Absorption Spectrum Measuring Device
5.3. Refractive Index Measuring Device
6. Theoretical Study
7. Suppression Method of Photodarkening
7.1. Changing the Pump Wavelength
7.2. The Capture of Electrons and Holes Involved in the Generation of Defect
7.3. Avoid Clusters
7.4. Add Deexcitation Channel
7.5. Eliminate the Related Defects
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chávez, A.D.G.; Kir’yanov, A.V.; Barmenkov, Y.O.; Il’ichev, N.N. Reversible photo-darkening and resonant photo-bleaching of Ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation. Laser Phys. Lett. 2007, 4, 734–739. [Google Scholar] [CrossRef]
- Manek-Hoenninger, I.; Boullet, J.; Cardinal, T.; Guillen, F.; Ermeneux, S.; Podgorski, M.; Doua, R.B.; Salin, F. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber. Opt. Express 2007, 15, 1606–1611. [Google Scholar] [CrossRef]
- Yoo, S.; Basu, C.; Boyland, A.J.; Sones, C.; Nilsson, J.; Sahu, J.K.; Payne, D. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation. Opt. Lett. 2007, 32, 1626–1628. [Google Scholar] [CrossRef]
- Laperle, P.; Chandonnet, A.; Vallee, R. Photoinduced absorption in thulium-doped ZBLAN fibers. Opt. Lett. 1995, 20, 2484–2486. [Google Scholar] [CrossRef]
- Koponen, J.J.; Söderlund, M.; Hoffman, H.J.; Tammela, S.K.J.O.E. Measuring photodarkening from single-mode ytterbium doped silica fibers. Opt. Express 2006, 14, 11539. [Google Scholar] [CrossRef] [PubMed]
- Harter, D.J.; Morasse, B.; Tünnermann, A.; Chatigny, S.; Gagnon, É.; Broeng, J.; Iii, C.H.; Hovington, C.; Martin, J.P.; de Sandro, J.P. Low photodarkening single cladding ytterbium fibre amplifier. In Fiber Lasers IV: Technology, Systems, and Applications; International Society for Optics and Photonics: San Jose, CA, USA, 2007. [Google Scholar]
- Koponen, J.; Soederlund, M.; Hofftnan, H.J.; Kliner, D.; Koplow, J. Photodarkening Measurements in Large-Mode-Area Fibers. Proc. SPIE 2007, 6453, 64531E. [Google Scholar] [CrossRef]
- Millar, C.A.; Mallinson, S.R.; Ainslie, B.J.; Craig, S.P. Photochromic behavior of thulium-doped silica optical fibers. Electron. Lett. 1988, 24, 590–591. [Google Scholar] [CrossRef]
- Brocklesby, W.S.; Mathieu, A.; Brown, R.S.; Lincoln, J.R. Defect production in silica fibers doped with TM3+. Opt. Lett. 1993, 18, 2105–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broer, M.M.; Krol, D.M.; Digiovanni, D.J. Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass-fiber. Opt. Lett. 1993, 18, 799–801. [Google Scholar] [CrossRef]
- Barber, P.R.; Paschotta, R.; Tropper, A.C.; Hanna, D.C. Infrared-induced photodarkening in tm-doped fluoride fibers. Opt. Lett. 1995, 20, 2195–2197. [Google Scholar] [CrossRef] [Green Version]
- Laperle, P.; Chandonnet, A.; Vallee, R. Photobleaching of thulium-doped ZBLAN fibers with visible light. Opt. Lett. 1997, 22, 178–180. [Google Scholar] [CrossRef]
- Frith, G.; Carter, A.; Samson, B.; Faroni, J.; Farley, K.; Tankala, K.; Town, G.E. Mitigation of photodegradation in 790 nm-pumped Tm-doped fibers. Proc. SPIE 2010, 7580, 75800A. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Xing, Y.-B.; Lin, X.-F.; Chen, G.; Shi, C.-J.; Peng, J.-G.; Li, H.-Q.; Dai, N.-L.; Li, J.-Y. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading. Opt. Lett. 2020, 45, 2534–2537. [Google Scholar] [CrossRef]
- Mattsson, K.E. Photo darkening of rare earth doped silica. Opt. Express 2011, 19, 19797–19812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.-J.; Liu, F.; Chen, Y.-F.; Wang, X.-J.; Sun, K.-N.; Pan, Z. New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light-Sci. Appl. 2016, 5, e16124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschotta, R.; Nilsson, J.; Barber, P.R.; Caplen, J.E.; Tropper, A.C.; Hanna, D.C. Lifetime quenching in Yb-doped fibres. Opt. Commun. 1997, 136, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Koponen, J.J.; Söderlund, M.; Tammela, S.; Po, H.J.P.S. Photodarkening in ytterbium-doped silica fibers. Proc. SPIE 2005, 5990, 599008. [Google Scholar]
- Jetschke, S.; Unger, S.; Roepke, U.; Kirchhof, J. Photodarkening in Yb doped fibers: Experimental evidence of equilibrium states depending on the pump power. Opt. Express 2007, 15, 14838–14843. [Google Scholar] [CrossRef] [PubMed]
- Engholm, M.; Norin, L. Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass. Opt. Express 2008, 16, 1260–1268. [Google Scholar] [CrossRef]
- Jetschke, S.; Unger, S.; Schwuchow, A.; Leich, M.; Kirchhof, J. Efficient Yb laser fibers with low photodarkening by optimization of the core composition. Opt. Express 2008, 16, 15540–15545. [Google Scholar] [CrossRef]
- Leich, M.; Roepke, U.; Jetschke, S.; Unger, S.; Reichel, V.; Kirchhof, J. Non-isothermal bleaching of photodarkened Yb-doped fibers. Opt. Express 2009, 17, 12588–12593. [Google Scholar] [CrossRef]
- Soderlund, M.J.; Ponsoda, J.J.M.I.; Koplow, J.P.; Honkanen, S. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling. Opt. Express 2009, 17, 9940–9946. [Google Scholar] [CrossRef]
- Engholm, M.; Jelger, P.; Laurell, F.; Norin, L. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping. Opt. Lett. 2009, 34, 1285–1287. [Google Scholar] [CrossRef]
- Ponsoda, J.J.M.i.; Soderlund, M.; Koplow, J.; Koponen, J.; Iho, A.; Honkanen, S. Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber. Proc. SPIE 2009, 7195, 7195D. [Google Scholar] [CrossRef]
- Ponsoda, J.J.M.i.; Soderlund, M.; Koplow, J.; Koponen, J.; Honkanen, S. Photodarkening-induced increase of temperature in ytterbium-doped fibers. Proc. SPIE 2010, 7580, 75802N-1–75802N-7. [Google Scholar] [CrossRef]
- Yoo, S.; Boyland, A.J.; Standish, R.J.; Sahu, J.K. Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature. Electron. Lett. 2010, 46, 243–244. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Ponsoda, J.J.M.I.; Tervonen, A.; Honkanen, S. Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching. Appl. Opt. 2010, 49, 5799–5805. [Google Scholar] [CrossRef] [PubMed]
- Leich, M.; Jetschke, S.; Unger, S.; Kirchhof, J. Temperature influence on the photodarkening kinetics in Yb-doped silica fibers. J. Opt. Soc. Am. B-Opt. Phys. 2011, 28, 65–68. [Google Scholar] [CrossRef]
- Ponsoda, J.J.M.i.; Ye, C.; Koplow, J.P.; Soderlund, M.J.; Koponen, J.J.; Honkanen, S. Analysis of temperature dependence of photodarkening in ytterbium-doped fibers. Opt. Eng. 2011, 50, 111610. [Google Scholar] [CrossRef]
- Gebavi, H.; Taccheo, S.; Tregoat, D.; Monteville, A.; Robin, T. Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation. Opt. Mater. Express 2012, 2, 1286–1291. [Google Scholar] [CrossRef]
- Piccoli, R.; Robin, T.; Mechin, D.; Brand, T.; Klotzback, U.; Taccheo, S. Effective mitigation of photodarkening in Yb-doped lasers based on Al-silicate using UV/visible light. Proc. SPIE 2014, 8961, 896121. [Google Scholar] [CrossRef]
- Zhao, N.; Xing, Y.B.; Li, J.M.; Liao, L.; Wang, Y.B.; Peng, J.G.; Yang, L.Y.; Dai, N.L.; Li, H.Q.; Li, J.Y. 793 nm pump induced photo-bleaching of photo-darkened Yb3+-doped fibers. Opt. Express 2015, 23, 25272–25278. [Google Scholar] [CrossRef] [PubMed]
- Roepke, U.; Jetschke, S.; Leich, M. Linkage of photodarkening parameters to microscopic quantities in Yb-doped fiber material. J. Opt. Soc. Am. B-Opt. Phys. 2018, 35, 3126–3133. [Google Scholar] [CrossRef]
- Zhao, N.; Li, W.; Li, J.; Zhou, G.; Li, J. Elimination of the Photodarkening Effect in an Yb-Doped Fiber Laser with Deuterium. J. Lightw. Technol. 2019, 37, 3021–3026. [Google Scholar] [CrossRef]
- Zhao, N.; Peng, K.; Li, J.; Chu, Y.; Zhou, G.; Li, J. Photodarkening effect suppression in Yb-doped fiber through the nanoporous glass phase-separation fabrication method. Opt. Mater. Express 2019, 9, 1085–1094. [Google Scholar] [CrossRef]
- Cao, R.; Chen, G.; Chen, Y.; Zhang, Z.; Lin, X.; Dai, B.; Yang, L.; Li, J.J.P.R. Effective suppression of the photodarkening effect in high-power Yb-doped fiber amplifiers by H2 loading. Photonics Res. 2020, 8, 288–295. [Google Scholar] [CrossRef]
- Ponsoda, J.J.M.i.; Soderlund, M.J.; Koplow, J.P.; Koponen, J.J.; Honkanen, S. Photodarkening-induced increase of fiber temperature. Appl. Opt. 2010, 49, 4139–4143. [Google Scholar] [CrossRef]
- Leich, M.; Fiebrandt, J.; Schwuchow, A.; Jetschke, S.; Unger, S.; Jaeger, M.; Rothhardt, M.; Bartelt, H. Length distributed measurement of temperature effects in Yb-doped fibers during pumping. Opt. Eng. 2014, 53, 066101. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Archambault, J.L.; Reekie, L.; Russell, P.S.J.; Payne, D.N. Photoinduced absorption change in germanosilicate preforms—Evidence for the color-center model of photosensitivity. Appl. Opt. 1995, 34, 3436–3440. [Google Scholar] [CrossRef]
- Skuja, L. Defects in SiO2 and Related Dielectrics: Science and Technology; NATO Science Series; NATO: Erice, Italy, 2000. [Google Scholar]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 1989, 14, 823–825. [Google Scholar] [CrossRef]
- Lee, Y.W.; Sinha, S.; Digonnet, A.J.F.; Byer, R.L.; Jiang, S. Measurement of high-photodarkening resistance in phosphate fiber doped with 12% Yb2O3. Proc. SPIE 2008, 6873, 68731D. [Google Scholar] [CrossRef]
- Poyntzwright, L.J.; Russell, P.S.J. Spontaneous relaxation processes in irradiated germanosilicate optical fibers. Electron. Lett. 1989, 25, 478–480. [Google Scholar] [CrossRef] [Green Version]
- Griscom, D.L. Self-trapped holes in glassy silica: Basic science with relevance to photonics in space. Proc. SPIE 2011, 8164, 816405. [Google Scholar] [CrossRef]
- Engholm, M.; Norin, L. Comment on “Photo darkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”. Opt. Lett. 2008, 33, 1216. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.G.; Keister, K.E.; Dragic, P.D.; Croteau, A.; Eden, J.G. Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: Evidence for excitation transfer from oxygen deficiency centers to Yb3+. J. Opt. Soc. Am. B-Opt. Phys. 2010, 27, 2087–2094. [Google Scholar] [CrossRef]
- Engholm, M.; Norin, L.; Aberg, D. Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation. Opt. Lett. 2007, 32, 3352–3354. [Google Scholar] [CrossRef] [PubMed]
- Engholm, M.; Norin, L.; Hirt, C.; Fredrich-Thornton, S.T.; Petermann, K.; Huber, G. Quenching processes in Yb lasers; Correlation to the valence stability of the Yb ion. Proc. SPIE 2009, 7193, 71931U. [Google Scholar]
- Shubin, A.V.; Yashkov, M.V.; Melkumov, M.A.; Smirnov, S.A.; Dianov, E.M. Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers. In Proceedings of the European Conference on Lasers and Electro-Optics 2007, Munich, Germany, 17 June 2007. [Google Scholar]
- Paschotta, R.; Tropper, A.C. Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient lambda=980 nm with a regard to the Ytterbium ion-pairs’ effect: Comment. Opt. Express 2006, 14, 6981–6982. [Google Scholar] [CrossRef] [PubMed]
- Kir’yanov, A.V.; Barmenkov, Y.O. Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient lambda=980 nm with a regard to the Ytterbium ion-pairs’ effect: Reply. Opt. Express 2006, 14, 6983–6985. [Google Scholar] [CrossRef]
- Hand, D.P.; Russell, P.S. Photoinduced refractive-index changes in germanosilicate fibers. Opt. Lett. 1990, 15, 102–104. [Google Scholar] [CrossRef] [Green Version]
- Koponen, J.; Soderlund, M.; Hoffman, H.J.; Kliner, D.A.V.; Koplow, J.P.; Hotoleanu, M. Photodarkening rate in Yb-doped silica fibers. Appl. Opt. 2008, 47, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.V.; Smith, J.J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm. Opt. Express 2016, 2, 975–992. [Google Scholar] [CrossRef]
- Mejia, E.B.; Talavera, D.V. Red (632.8-nm) attenuation by a copropagating 1175-nm signal in Tm3+-doped optical fibers. Opt. Eng. 2007, 46, 105001. [Google Scholar] [CrossRef]
- Schaudel, B.; Goldner, P.; Prassas, M.; Auzel, F. Cooperative luminescence as a probe of clustering in Yb3+ doped glasses. J. Alloy. Compd. 2000, 300, 443–449. [Google Scholar] [CrossRef]
- Bonar, J.R.; Vermelho, M.V.D.; McLaughlin, A.J.; Marques, P.V.S.; Aitchison, J.S.; Martins, J.F.; Bezerra, A.G.; Gomes, A.S.L.; deAraujo, C.B. Blue light emission in thulium doped silica-on-silicon waveguides. Opt. Commun. 1997, 141, 137–140. [Google Scholar] [CrossRef]
- Jenouvrier, P.; Boccardi, G.; Fick, J.; Jurdyc, A.M.; Langlet, M. Up-conversion emission in rare earth-doped Y2Ti2O7 sol-gel thin films. J. Lumin. 2005, 113, 291–300. [Google Scholar] [CrossRef]
- Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Zhang, D.; Ding, F. Synthesis and upconversion luminescence properties of NaYF4:Yb3+/Er3+ microspheres. J. Rare Earths 2009, 27, 394–397. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion processes in coupled ion systems. J. Lumin. 1990, 45, 341–345. [Google Scholar] [CrossRef]
- Peretti, R.; Gonnet, C.; Jurdyc, A.-M. Revisiting literature observations on photodarkening in Yb3+ doped fiber considering the possible presence of Tm impurities. J. Appl. Phys. 2012, 112, 093511. [Google Scholar] [CrossRef] [Green Version]
- Jetschke, S.; Unger, S.; Schwuchow, A.; Leich, M.; Fiebrandt, J.; Jäger, M.; Kirchhof, J. Evidence of Tm impact in low-photodarkening Yb-doped fibers. Opt. Express 2013, 21, 7590–7598. [Google Scholar] [CrossRef]
- Simpson, D.A.; Gibbs, W.E.; Collins, S.F.; Blanc, W.; Dussardier, B.; Monnom, G.; Peterka, P.; Baxter, G.W. Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation. Opt. Express 2008, 16, 13781–13799. [Google Scholar] [CrossRef] [PubMed]
- Jolly, A.; Vincont, C.; Pierre, C.; Boullet, J. Modelling the competition between photo-darkening and photo-bleaching effects in high-power ytterbium-doped fibre amplifiers. Appl. Phys. B-Lasers Opt. 2017, 123, 227. [Google Scholar] [CrossRef]
- Otto, H.-J.; Modsching, N.; Jauregui, C.; Limpert, J.; Tuennermann, A. Impact of photodarkening on the mode instability threshold. Opt. Express 2015, 23, 15265–15277. [Google Scholar] [CrossRef]
- Ward, B. Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers. Opt. Express 2016, 24, 3488–3501. [Google Scholar] [CrossRef] [PubMed]
- Jauregui, C.; Otto, H.-J.; Stutzki, F.; Limpert, J.; Tuennermann, A. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening. Opt. Express 2015, 23, 20203–20218. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yoo, S.; Yu, X.; Jain, D.; Sahu, J.K. Pump Power Depreciation by Photodarkening in Ytterbium-Doped Fibers and Amplifiers. IEEE Photonics Technol. Lett. 2014, 26, 115–118. [Google Scholar] [CrossRef]
- Jetschke, S.; Schwuchow, A.; Unger, S.; Leich, M.; Jäger, M.; Kirchhof, J. Deactivation of Yb3+ ions due to photodarkening. Opt. Mater. Express 2013, 3, 452. [Google Scholar] [CrossRef]
- Sceats, M.G.; Atkins, G.R.; Poole, S.B. Photolytic index changes in optical fibers. Annu. Rev. Mater. Sci. 1993, 23, 381–410. [Google Scholar] [CrossRef]
- Brambilla, G.; Pruneri, V.; Reekie, L.; Paleari, A.; Chiodini, N.; Booth, H. High photosensitivity in SnO2: SiO2 optical fibers. Fiber Integr. Opt. 2001, 20, 553–564. [Google Scholar] [CrossRef]
- Gusarov, A.I.; Doyle, D.B. Contribution of photoinduced densification to refractive-index modulation in Bragg gratings written in Ge-doped silica fibers. Opt. Lett. 2000, 25, 872–874. [Google Scholar] [CrossRef] [Green Version]
- Gusarov, A.I.; Doyle, D.B.; Berghmans, F.; Deparis, O. Analysis of photoinduced stress distribution in fiber Bragg gratings. Opt. Lett. 1999, 24, 1334–1336. [Google Scholar] [CrossRef]
- Taunay, T.; Niay, P.; Bernage, P.; Douay, M.; Xie, W.X.; Pureur, D.; Cordier, P.; Bayon, J.F.; Poignant, H.; Delevaque, E.; et al. Bragg grating inscriptions within strained monomode high NA germania-doped fibres: Part I. Experimentation. J. Phys. D-Appl. Phys. 1997, 30, 40–52. [Google Scholar] [CrossRef]
- Hewlett, S.J.; Love, J.D.; Meltz, G.; Bailey, T.J.; Morey, W.W. Cladding-mode coupling characteristics of bragg gratings in depressed-cladding fiber. Electron. Lett. 1995, 31, 820–822. [Google Scholar] [CrossRef]
- Oh, K.; Kim, J.M.; Seo, H.S.; Paek, U.C.; Kim, M.S.; Choi, B.H. Suppression of cladding mode coupling in Bragg grating using Ge2O-B2O3 codoped photosensitive cladding optical fibre. Electron. Lett. 1999, 35, 423–424. [Google Scholar] [CrossRef]
- Giles, C.R.; Desurvire, E. Modeling erbium-doped fiber amplifiers. J. Lightw. Technol. 1991, 9, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Hilaire, S.; Roy, P.; Pagnoux, D.; Bayart, D. Large mode Er3+-doped photonic crystal fibre amplifier for higly efficient amplification. In Proceedings of the European Conference on Optieal Colnmunieation, ECOC 2003, Rimini, Italy, 21–25 September 2003. [Google Scholar]
- Cregan, R.F.; Knight, J.C.; Russell, P.S.; Roberts, P.J. Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber. J. Lightw. Technol. 1999, 17, 2138–2141. [Google Scholar] [CrossRef]
- Cucinotta, A.; Poli, F.; Selleri, S.; Vincetti, L.; Zoboli, M. Amplification properties of Er3+-doped photonic crystal fibers. J. Lightw. Technol. 2003, 21, 782–788. [Google Scholar] [CrossRef]
- Rebolledo, M.A.; Jarabo, S. Erbium-doped silica fiber modeling with overlapping factors. Appl. Opt. 1994, 33, 5585–5593. [Google Scholar] [CrossRef] [PubMed]
- Shugan, F.; Qiren, Z. Crystal Color Center Physics; Shanghai Jiaotong University Press: Shanghai, China, 1989; p. 14. (In Chinese) [Google Scholar]
- Greenwell, R.A.; Barnes, C.E.; Scott, D.M.; Biswas, D.R. Optical fibers in the adverse space environment—The Space Station. Proc. SPIE 1990, 1314, 100–104. [Google Scholar]
- Soderlund, M.J.; Ponsoda, J.J.M.i.; Koplow, J.P.; Honkanen, S. Thermal bleaching of photodarkening-induced loss in ytterbium-doped fibers. Opt. Lett. 2009, 34, 2637–2639. [Google Scholar] [CrossRef]
- Thichda, B.; Berghmansa, B.F.; Decrétona, M.; Tomashuk, A.L.; Golant, K.M. Dedicated optical fibers for dosimetry based on radiation-induced attenuation: Experimental results. In Proceedings of the Europto Conference on Photonics for Space & Radiation Environments, Florence, Italy, 7 December 1999; Volume 3872, pp. 36–42. [Google Scholar] [CrossRef]
- Morita, Y.; Kawakami, W. Dose-rate effect on radiation-induced attenuation of pure silica core optical fibers. IEEE Trans. Nucl. Sci. 1989, 36, 584–590. [Google Scholar] [CrossRef]
- Piccoli, R.; Gebavi, H.; Lablonde, L.; Cadier, B.; Robin, T.; Monteville, A.; le Goffic, O.; Landais, D.; Mechin, D.; Milanese, D.; et al. Evidence of Photodarkening Mitigation in Yb-Doped Fiber Lasers by Low Power 405 nm Radiation. IEEE Photonics Technol. Lett. 2014, 26, 50–53. [Google Scholar] [CrossRef]
- Dong, L.; Archambault, J.L.; Taylor, E.; Roe, M.P.; Reekie, L.; Russell, P.S.J. Photosensitivity in tantalum-doped silica optical fibers. J. Opt. Soc. Am. B-Opt. Phys. 1995, 12, 1747–1750. [Google Scholar] [CrossRef]
- Gebavi, H.; Taccheo, S.; Lablonde, L.; Cadier, B.; Robin, T.; Mechin, D.; Tregoat, D. Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure. Opt. Lett. 2013, 38, 196–198. [Google Scholar] [CrossRef]
- Atkins, G.R.; Ouellette, F. Reversible photodarkening and bleaching in TB3+-doped optical fibers. Opt. Lett. 1994, 19, 951–956. [Google Scholar] [CrossRef]
- Jasapara, J.; Andrejco, M.; Digiovanni, D.; Windeler, R.J.I. Effect of Heat and H2 Gas on the Photo-Darkening of Yb3+ Fibers. In Proceedings of the Conference on Lasers and Electro-Optics 2006, Long Beach, CA, USA, 21–26 May 2006. [Google Scholar] [CrossRef]
- Jetschke, S.; Leich, M.; Unger, S.; Roepke, U. Combined effect of Yb inversion and pump photons on photodarkening in Yb laser fibers: Experiments and model considerations. J. Opt. Soc. Am. B-Opt. Phys. 2019, 36, 2438–2444. [Google Scholar] [CrossRef]
- Leich, M.; Jetschke, S.; Unger, S.; Kirchhof, J. Temperature dependence of photodarkening kinetics. Proc. SPIE 2010, 7580, 758009. [Google Scholar]
- Taccheo, S.; Gebavi, H.; Monteville, A.; le Goffic, O.; Landais, D.; Mechin, D.; Tregoat, D.; Cadier, B.; Robin, T.; Milanese, D.; et al. Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation. Opt. Express 2011, 19, 19340–19345. [Google Scholar] [CrossRef]
- Laperle, P.; Desbiens, L.; le Foulgoc, K.; Drolet, M.; Deladurantaye, P.; Proulx, A.; Taillon, Y. Modeling the photodegradation of large mode area Yb-doped fiber power amplifiers. Proc. SPIE 2009, 7195, 71952C. [Google Scholar]
- Laperle, P. Etude de Lasers a Fibre Emettant a 480 nm et du Phenomene de Coloration Dans la Fibre de ZBLAN Dopee au Thulium. Ph.D. Thesis, Universite Laval, Quebec City, QC, Canada, 2003. [Google Scholar]
- Jelger, P.; Engholm, M.; Norin, L.; Laurell, F. Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber. J. Opt. Soc. Am. B-Opt. Phys. 2010, 27, 338–342. [Google Scholar] [CrossRef]
- Engholm, M.; Norin, L. Ytterbium-doped fibers co-doped with Cerium; Next generation of fibers for high power fiber lasers? Proc. SPIE 2010, 7580, 758008. [Google Scholar]
- Vargin, V.V.; Osadchaya, G.A.J.G. Cerium dioxide as a fining agent and decolorizer for glass. Glass Ceram. 1960, 17, 78–82. [Google Scholar] [CrossRef]
- Kilabayashi, T.; Ikeda, M.; Nakai, M.; Sakai, T.; Himeno, K.; Ohashi, K. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping. In Proceedings of the 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, Anaheim, CA, USA, 5–10 March 2006; Volume 106, pp. 9–12. [Google Scholar] [CrossRef]
- Arai, K.; Namikawa, H.; Kumata, K.; Honda, T.; Ishii, Y.; Handa, T.J. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. Appl. Phys. 1986, 59, 3430–3436. [Google Scholar] [CrossRef]
- Peretti, R.; Jurdyc, A.M.; Jacquier, B.; Blanc, W.; Dussardier, B. Spectroscopic signature of phosphate crystallization in erbium-doped optical fibre preforms. Opt. Mater. 2011, 33, 835–838. [Google Scholar] [CrossRef] [Green Version]
- Deschamps, T.; Ollier, N.; Vezin, H.; Gonnet, C. Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening. J. Chem. Phys. 2012, 136, 372. [Google Scholar] [CrossRef]
- Gavrilovic, P.; Goyal, A.K.; Po, H.; Singh, S. Laser Composition for Preventing Photo-Induced Damage. U.S. Patent No. 6,154,598, 28 November 2000. [Google Scholar]
- Jetschke, S.; Leich, M.; Unger, S.; Schwuchow, A.; Kirchhof, J. Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers. Opt. Express 2011, 19, 14473–14478. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, T.; Vezin, H.; Gonnet, C.; Ollier, N. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber. Opt. Express 2013, 21, 8382–8392. [Google Scholar] [CrossRef]
- Dragic, P.D.; Carlson, C.G.; Croteau, A. Characterization of defect luminescence in Yb doped silica fibers: Part INBOHC. Opt. Express 2008, 16, 4688–4697. [Google Scholar] [CrossRef]
- Vitiello, M.; Lopez, N.; Illas, F.; Pacchioni, G. H-2 cracking at SiO2 defect centers. J. Phys. Chem. A 2000, 104, 4674–4684. [Google Scholar] [CrossRef]
- Xing, Y.-B.; Liu, Y.-Z.; Zhao, N.; Cao, R.-T.; Wang, Y.-B.; Yang, Y.; Peng, J.-G.; Li, H.-Q.; Yang, L.-Y.; Dai, N.-L.; et al. Radical passive bleaching of Tm-doped silica fiber with deuterium. Opt. Lett. 2018, 43, 1075–1078. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Su, X.; Zhang, Y.; Zhang, H.; Zheng, Y. Progress and Summary of Photodarkening in Rare Earth Doped Fiber. Appl. Sci. 2021, 11, 10386. https://doi.org/10.3390/app112110386
Sun T, Su X, Zhang Y, Zhang H, Zheng Y. Progress and Summary of Photodarkening in Rare Earth Doped Fiber. Applied Sciences. 2021; 11(21):10386. https://doi.org/10.3390/app112110386
Chicago/Turabian StyleSun, Tianran, Xinyang Su, Yunhong Zhang, Huaiwei Zhang, and Yi Zheng. 2021. "Progress and Summary of Photodarkening in Rare Earth Doped Fiber" Applied Sciences 11, no. 21: 10386. https://doi.org/10.3390/app112110386
APA StyleSun, T., Su, X., Zhang, Y., Zhang, H., & Zheng, Y. (2021). Progress and Summary of Photodarkening in Rare Earth Doped Fiber. Applied Sciences, 11(21), 10386. https://doi.org/10.3390/app112110386