CFD Based Non-Dimensional Characterization of Energy Dissipation Due to Verticle Slosh
Abstract
:1. Introduction
- We validate the accuracy of the CFD code Elemental® for modelling violent vertical slosh physics relevant to this article.
- We detail the CFD based energy budget used to quantify effects of scaling non-dimensional properties on the system.
- We present a non-dimensional analysis of a SDOF tank under vertical slosh, isolating the functional relationship characterising slosh induced energy dissipation.
- We define the non-dimensional parameter space of interest for the problem under consideration (to include both experimental and full scales).
- Finally, we develop novel scaling-laws which correlate the slosh induced energy dissipation as a function of the identified non-dimensional parameters. This is done via curve fitting of CFD generated data.
- The developed novel scaling laws are finally applied to quantify ideal (representative of full scale aircraft) experimental slosh induced energy dissipation.
2. Validation of CFD Model
3. Energy Analysis
4. Dimensional Analysis
5. Scaling of Violent Sloshing Systems
5.1. Froude Scaling Rules
5.2. Practical Considerations
6. Non-Dimensional Property Parameter Space
7. Non-Dimensional Study Results and Analysis
8. Dissipated Energy Scaling Laws
9. Scaling-Laws Application
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gambioli, F.; Chamos, A.; Jones, S.; Guthrie, P.; Webb, J.; Levenhagen, J.; Behruzi, P.; Mastroddi, F.; Malan, A.G.; Longshaw, S.; et al. Sloshing Wing Dynamics-Project Overview Sloshing Wing Dynamics—Project Overview. In Proceedings of the 8th Transport Research Arena TRA 2020, Helsinki, Finland, 27–30 April 2020. [Google Scholar]
- Titurus, B.; Cooper, J.E.; Saltari, F.; Mastroddi, F.; Gambioli, F. Analysis of a Sloshing Beam Experiment. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Savannah, GA, USA, 10–13 June 2019; pp. 1–18. [Google Scholar]
- Gambioli, F.; Usach, R.A.; Kirby, J.; Wilson, T.; Behruzi, P.; Dynamics, S. Experimental Evaluation of Fuel Sloshing Effects on Wing Dynamics. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Savannah, GA, USA, 10–13 June 2019; pp. 1–14. [Google Scholar]
- Lewis, R.W.; Malan, A.G. Continuum thermodynamic modeling of drying capillary particulate materials via an edge-based algorithm. Comput. Methods Appl. Mech. Eng. 2005, 194, 2043–2057. [Google Scholar] [CrossRef]
- Oxtoby, O.F.; Malan, A.G. A matrix-free, implicit, incompressible fractional-step algorithm for fluid-structure interaction applications. J. Comput. Phys. 2012, 231, 5389–5405. [Google Scholar] [CrossRef]
- Heyns, J.A.; Malan, A.G.; Harms, T.M.; Oxtoby, O.F. Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach. Int. J. Numer. Methods Fluids 2013, 71, 788–804. [Google Scholar] [CrossRef]
- Suliman, R.; Oxtoby, O.F.; Malan, A.G.; Kok, S. An enhanced finite volume method to model 2D linear elastic structures. Appl. Math. Model. 2014, 38, 2265–2279. [Google Scholar] [CrossRef]
- Ilangakoon, N.A.; Malan, A.G.; Jones, B.W. A higher-order accurate surface tension modelling volume-of-fluid scheme for 2D curvilinear meshes. J. Comput. Phys. 2020, 420, 109717. [Google Scholar] [CrossRef]
- Gibbings, J.C. Dimensional Analysis; Springer Science & Business Media: Liverpool, UK, 2011; pp. 1–20. [Google Scholar] [CrossRef]
- Thompson, J.F.; Nein, M.E. Prediction of Propellant Tank Pressurization Requirements by Dimensional Analysis; NASA: Washington, DC, USA, 1966.
- Summer, I.E. Preliminary Experimental Investigation of Frequencies and Forces Resulting from Liquid Sloshing in Toroidal Tanks; NASA: Washington, DC, USA, 1963.
- Yu, J.K.; Wakahara, T.; Reed, D.A. A non-linear numerical model of the tuned liquid damper. Earthq. Eng. Struct. Dyn. 1999, 28, 671–686. [Google Scholar] [CrossRef]
- Tait, M.J. Modelling and preliminary design of a structure-TLD system. Eng. Struct. 2008, 30, 2644–2655. [Google Scholar] [CrossRef]
- Konopka, M.; De Rose, F.; Strauch, H.; Jetzschmann, C.; Darkow, N.; Gerstmann, J. Active slosh control and damping—Simulation and experiment. Acta Astronaut. 2019, 158, 89–102. [Google Scholar] [CrossRef]
- Heyns, J.A.; Malan, A.G.; Harms, T.M.; Oxtoby, O.F. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach. J. Comput. Phys. 2013, 240, 145–157. [Google Scholar] [CrossRef]
- Malan, A.G.; Jones, B.W.S.; Malan, L.C.; Wright, M.D. Accurate Prediction of Violent Slosh Loads via a Weakly Compressible VoF Formulation. In Proceedings of the 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, 20–25 June 2021. Paper number ISOPE-I-21-3210. [Google Scholar]
- Oxtoby, O.F.; Malan, A.G.; Heyns, J.A. A computationally efficient 3D finite-volume scheme for violent liquid–gas sloshing. Int. J. Numer. Methods Fluids 2015, 79, 306–321. [Google Scholar] [CrossRef]
- Sykes, B.S.; Malan, A.G.; Gambioli, F. Novel nonlinear fuel slosh surrogate reduced-order model for aircraft loads prediction. J. Aircr. 2018, 55, 1004–1013. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics, 2nd ed.; Pearson Education Limited: Harlow, UK, 2007; pp. 102–104. [Google Scholar]
- Jones, B.W.; Malan, A.G.; Ilangakoon, N.A. The initialisation of volume fractions for unstructured grids using implicit surface definitions. Comput. Fluids 2019, 179, 194–205. [Google Scholar] [CrossRef]
- Pope, S.B. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 2004, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- González-Gutiérrez, L.M.; Calderon-Sanchez, J.; Martinez-Carrascal, J.; Colagrossi, A.; Marrone, S. Report on Single-Phase, Multi-Phase SPH Model and Simulations; Technical Report; Universidad Politécnica de Madrid & Consiglio Nazionale delle Ricerche, Istituto di Ingegneria del Mare: Madrid, Spain, 2021. [Google Scholar]
- Antuono, M.; Marrone, S.; Colagrossi, A.; Bouscasse, B. Energy balance in the δ-SPH scheme. Comput. Methods Appl. Mech. Eng. 2015, 289, 209–226. [Google Scholar] [CrossRef]
- Marrone, S.; Colagrossi, A.; Di Mascio, A.; Le Touzé, D. Prediction of energy losses in water impacts using incompressible and weakly compressible models. J. Fluids Struct. 2015, 54, 802–822. [Google Scholar] [CrossRef]
- Calderon-Sanchez, J.; Martinez-Carrascal, J.; Gonzalez-Gutierrez, L.M.; Colagrossi, A. A global analysis of a coupled violent vertical sloshing problem using an SPH methodology. Eng. Appl. Comput. Fluid Mech. 2021, 15, 865–888. [Google Scholar] [CrossRef]
(%) | |
---|---|
Quantity | Units | ||||
---|---|---|---|---|---|
M | L | T | |||
Liquid Viscosity | [Pa·s] | 1 | −1 | −1 | |
Liquid Density | [kg·m] | 1 | −3 | 0 | |
Gas Density | [kg·m] | 1 | −3 | 0 | |
Liquid Surface Tension | [N·m] | 1 | 0 | −2 | |
liquid–solid Contact Angle | [rad] | 0 | 0 | 0 | |
v | Fluid speed | [m·s] | 0 | 1 | −1 |
g | Gravity | [m·s] | 0 | 1 | −2 |
m | Solid Mass | [kg] | 1 | 0 | 0 |
k | Structural Stiffness | [N·m] | 1 | 0 | −2 |
c | Structural Damping | [Ns·m] | 1 | 0 | −1 |
h | Tank Height | [m] | 0 | 1 | 0 |
l | Tank Length | [m] | 0 | 1 | 0 |
Height of fluid | [m] | 0 | 1 | 0 | |
Initial tank offset (spring displacement) | [m] | 0 | 1 | 0 |
Quantity | Factor |
---|---|
Length | |
Time | |
Mass | |
Velocity | |
Acceleration | |
Viscosity | |
Surface Tension | |
Force | |
Energy |
f [Hz] | ||
---|---|---|
Required | 3.35 | 1.65 |
Achieved | 7.0 | 3.44 |
Actual | Froude Scaled | Aircraft | |
---|---|---|---|
Protospace | Protospace | ||
0 | 0 | ||
Parameter | Property Range |
---|---|
− | |
kg·m | |
Pa·s | |
N·m | |
Hz |
Protospace | Protospace | Protospace * | Aircraft | |
---|---|---|---|---|
(Water) | (Cold Kerosene) | (Ideal) | (Cold Kerosene) | |
Protospace | Protospace | Protospace * | |
---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, M.D.; Gambioli, F.; Malan, A.G. CFD Based Non-Dimensional Characterization of Energy Dissipation Due to Verticle Slosh. Appl. Sci. 2021, 11, 10401. https://doi.org/10.3390/app112110401
Wright MD, Gambioli F, Malan AG. CFD Based Non-Dimensional Characterization of Energy Dissipation Due to Verticle Slosh. Applied Sciences. 2021; 11(21):10401. https://doi.org/10.3390/app112110401
Chicago/Turabian StyleWright, Michael Dennis, Francesco Gambioli, and Arnaud George Malan. 2021. "CFD Based Non-Dimensional Characterization of Energy Dissipation Due to Verticle Slosh" Applied Sciences 11, no. 21: 10401. https://doi.org/10.3390/app112110401
APA StyleWright, M. D., Gambioli, F., & Malan, A. G. (2021). CFD Based Non-Dimensional Characterization of Energy Dissipation Due to Verticle Slosh. Applied Sciences, 11(21), 10401. https://doi.org/10.3390/app112110401