Autonomous Service Drones for Multimodal Detection and Monitoring of Archaeological Sites
Abstract
:1. Introduction
- There must be a sufficient contrast between the thermal properties of the material of interest and those of the soil.
- The archaeological material below the surface must be close enough to the surface to be affected by heat flux.
- The thermal image must be acquired when the thermal differences are more pronounced as shown in Figure 2.
2. Literature Review
- Thermal conductivity: A physical property that measures the ability of an element to transmit heat (or infrared heat energy) through thermal conduction. That property depends on the nature of the material and is measured in watts per meter-kelvin (W/mK).
- Volumetric heat capacity: The property that defines the amount of heat energy that must be added to a unit of volume of a material to increase its temperature by one degree. This property depends on the density and composition of the material and is mostly, the reason, under the same light and temperature conditions, a stone will be warmer than the surrounding scattered ground.
- Thermal inertia: The property that describes the ability of a material to vary its temperature more or less quickly because of changing external conditions. A high thermal inertia value corresponds to a material that is slower in cooling or heating up as external thermal conditions change. Water, for example, has a high value of thermal inertia, for this reason, a moist soil will maintain a more constant temperature than a dry soil as external conditions vary. This property is directly proportional to the volumetric heat capacity of a material and inversely proportional to its thermal conductivity.
- Thermal emissivity: A physical quantity that measures the efficiency of a material to emit or reflect thermal radiation. This property, if noticeably different between two elements, allows a visible distinction from the thermal camera. For example, an accumulation of ceramic on the surface could be very visible in a thermal image, thanks to the different emissivity of the ceramic with respect to the surrounding soil [2,13].
3. Materials and Methods
3.1. Drone-Based Archaeological Aerial Monitoring Challenges
3.2. Proposed Framework for Archaeological Aerial Monitoring
3.3. Proposed Multimodal Depth-RGB and Thermal-RGB Mosaicking Algorithm
3.4. Proposed Built Cultural Heritage Detection Algorithm
- -
- = x-axis centroid of the bounding box.
- -
- = y-axis centroid of the bounding box.
- -
- w = Width of the bounding box.
- -
- h = Height of the bounding box.
Data Generation
3.5. Cultural Heritage Structure Modeling
4. Validation and Results
4.1. Multimodal Depth-RGB and Thermal-RGB Mosaicking Algorithm Testing Results
4.2. Built Cultural Heritage Detection Algorithm Testing
4.3. End-to-End Integration Testing and Validation
4.4. Built Cultural Heritage Detection Using Photogrammetry Software
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1: Function to convert and resize the infrared images in Matlab |
Algorithm A2: Function to crop the RGB images in Matlab |
[2880 3840] |
Algorithm A3. Merging IR and RGB images using Matlab |
References
- Fritsch, D.; Klein, M. Design of 3D and 4D Apps for Cultural Heritage Preservation. In Digital Cultural Heritage; Ioannides, M., Ed.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10605. [Google Scholar] [CrossRef]
- Tabbagh, A. Essai surles conditions d’application des mesures thermiques à la prospection archeologique. Ann. Gkophys. 1973, 29, 179–188. [Google Scholar]
- Mercuri, F.; Zammit, U.; Orazi, N.; Paoloni, S.; Marinelli, M.; Scudieri, F. Active infrared thermography applied to the investigation of art and historic artefacts. J. Therm. Anal. Calorim. 2011, 104, 475–485. [Google Scholar] [CrossRef]
- Fernandes, H.; Summa, J.; Daudre, J.; Rabe, U.; Fell, J.; Sfarra, S.; Gargiulo, G.; Herrmann, H.G. Characterization of Ancient Marquetry Using Different Non-Destructive Testing Technique. Appl. Sci. 2021, 11, 7979. [Google Scholar] [CrossRef]
- Moropoulou, A.; Avdelidis, N.P.; Karoglou, M.; Delegou, E.T.; Alexakis, E.; Keramidas, V. Multispectral Applications of Infrared Thermography in the Diagnosis and Protection of Built Cultural Heritage. Appl. Sci. 2018, 8, 284. [Google Scholar] [CrossRef]
- Jarząbek-Rychard, M.; Lin, D.; Maas, H.-G. Supervised Detection of Faç ade Openings in 3D Point Clouds with Thermal Attributes. Remote Sens. 2020, 12, 543. [Google Scholar] [CrossRef] [Green Version]
- Pisz, M.; Tomas, A.; Hegyi, A. Non-destructive research in the surroundings of the Roman Fort Tibiscum (today Romania). Archaeol. Prospect. 2020, 27, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Kljun, N.; Olsson, P.-O.; Mihai, L.; Liljeblad, B.; Weslien, P.; Klemedtsson, L.; Eklundh, L. Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera. Remote Sens. 2020, 11, 567. [Google Scholar] [CrossRef] [Green Version]
- Parisi, E.I.; Suma, M.; Güleç Korumaz, A.; Rosina, E.; Tucci, G. Aerial platforms (uav) surveys in the vis and tir range. Applications on archaeology and agriculture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLII-2/W11, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Casana, J.; Wiewel, A.; Cool, A.; Hill, A.; Fisher, K.; Laugier, E. Archaeological Aerial Thermography in Theory and Practice. Adv. Archaeol. Pract. 2017, 5, 310–327. [Google Scholar] [CrossRef] [Green Version]
- Cool, A.C. Aerial Thermography in Archaeological Prospection: Applications & Processing. Master’s Thesis, Department of Anthropology, University of Arkansas, Fayetteville, NC, USA, 2015. [Google Scholar]
- Scollar, I.; Tabbagh, A.; Hessse, A.; Herzog, I. Archaeological Prospecting and Remote Sensing; Topics in Remote Sensing; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Périsset, M.; Tabbagh, A. Interpretation of Thermal Prospection on Bare Soils. Archaeometry 1981, 23, 169–187. [Google Scholar] [CrossRef]
- Poirier, N.; Hautefeuille, F.; Calastrenc, C. Low Altitude Thermal Survey by Means of an Automated Unmanned Aerial Vehicle for the Detection of Archaeological Buried Structures. Archaeol. Prospect. 2013, 20, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Périsset, M. Prospection Thermique de Subsurfaces: Application á l’Archéologie. Ph.D. Thesis, L’Université Pierre et Marie Curie, Paris, France, 1980. [Google Scholar]
- Sever, T.L.; Wagner, D.W. Analysis of prehistoric roadways in Chaco Canyon using remotely sensed digital data. In Ancient Road Networks and Settlement Hierarchies in the New World; Trombold, C.D., Ed.; Cambridge University Press: Cambridge, UK, 1991; pp. 42–52. [Google Scholar]
- Challis, K.; Kincey, M.; Howard, A.J. Airborne Remote Sensing of Valley Floor Geoarchaeology Using Daedalus ATM and CASI. Archaeol. Prospect. 2009, 16, 17–33. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Kochavi, M.; Vinizki, L.; Shionim, M.; Portugali, J. Detection of buried ancient walls using airborne thermal video radiometry. Int. J. Remote Sens. 2001, 22, 3689–3702. [Google Scholar] [CrossRef]
- Wells, J. Kite aerial thermography. Int. Soc. Archaeol. 2011, 29, 9–10. [Google Scholar]
- Giardino, M.; Haley, B. Airborne remote sensing and geospatial analysis. In Remote Sensing in Archaeology: An Explicitly North American Perspective; University of Alabama Press: Tuscaloosa, AL, USA, 2006; pp. 47–77. [Google Scholar]
- Kvamme, K.L. Archaeological prospecting at the double ditch state historic site, North Dakota, USA. Archaeol. Prospect. 2008, 15, 62–79. [Google Scholar] [CrossRef]
- Buck, P.E.; Sabol, D.E.; Gillespie, A.R. Sub-pixel artifact detection using remote sensing. J. Archaeol. Sci. 2003, 30, 3689–3702. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Barbedo, J.G.A. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses. Drones 2019, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Evers, R.; Masters, P. The Application of Low-Altitude near Infrared Aerial Photography for Detecting Clandestine Burials Using a UAV and Low-Cost Unmodified Digital Camera. Forensic Sci. Int. 2018, 289, 408–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witczuk, J.; Pagacz, S.; Zmarz, A.; Cypel, M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests—Preliminary results. Int. J. Remote Sens. 2018, 39, 5503–5520. [Google Scholar] [CrossRef]
- Casana, J.; Kantner, J.; Wiewel, A.; Cothren, J. Archaeological aerial thermography: A case study at the Chaco-era Blue J community. J. Archaeol. Sci. 2014, 45, 207–219. [Google Scholar] [CrossRef]
- Hill, A.C.; Laugier, E.J.; Casana, J. Archaeological Remote Sensing Using Multi-Temporal, Drone-Acquired Thermal and Near Infrared (NIR) Imagery: A Case Study at the Enfield Shaker Village, New Hampshire. Remote Sens. 2020, 12, 690. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, J.R.; El-Baz, F. Remote Sensing in Archaeology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lasaponara, R.; Masini, N. Satellite Remote Sensing: A New Tool for Archaeology. In Remote Sensing and Digital Image Processing; Springer: Berlin/Heidelberg, Germany, 2012; Volume 16. [Google Scholar]
- Leisz, S.J. An Overview of the Application of Remote Sensing to Archaeology During the Twentieth Century. In Mapping Archaeological Landscapes from Space; Douglas: Singapore; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bewley, B.; Bradbury, J. The Endangered Archaeology in the Middle East and North Africa Project: Origins, Development and Future Directions. Bull. Counc. Br. Res. Levant 2017, 12, 15–20. [Google Scholar] [CrossRef]
- Hammer, E.; Seifried, R.; Franklin, K.; Lauricella, A. Remote Assessments of the Archaeological Heritage Situation in Afghanistan. J. Cult. Herit. 2018, 33, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Lambers, K.; Traviglia, A. Automated Detection in Remote Sensing Archaeology: A Reading List. AARGnews 2016, 53, 25–29. [Google Scholar]
- Lambers, K. Airborne and Spaceborne Remote Sensing and Digital Image Analysis in Archaeology. In Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research; Springer: Berlin/Heidelberg, Germany, 2018; pp. 109–122. [Google Scholar]
- Pengfei, Z.B.; Longyin, W.; Dawei, D.; Xiao, B.; Haibin, L.; Qinghua, H.; Qinqin, N.; Hao, C.; Chenfeng, L.; Xiaoyu, L.; et al. VisDrone-DET2018: The Vision Meets Drone Object Detection in Image Challenge Results; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1. [Google Scholar] [CrossRef]
- Lambers, K.; Verschoof, W.; Bourgeois, Q. Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection. Remote Sens. 2019, 11, 794. [Google Scholar] [CrossRef] [Green Version]
- Trier, O.D.; Salberg, A.B.; Pilo, L.H. Semi-Automatic Detection of Charcoal Kilns from Airborne Laser Scanning Data. In CAA2016: Oceans of Data, Proceedings of the 44th Conference on Computer Applications and Quantitative Methods in Archaeology; Archaeopress: Oxford, UK, 2016; pp. 219–231. [Google Scholar]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting Neolithic burial mounds from LiDARderived elevation data using a multi-scale approach and machine learning techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Biagetti, S. High and medium resolution satellite imagery to evaluate late holocene human-environment interactions in arid lands: A case study from the Central Sahara. Remote Sens. 2017, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Thabeng, O.L.; Merlo, S.; Adam, E. High-resolution remote sensing and advanced classification techniques for the prospection of archaeological sites’ markers: The case of dung deposits in the Shashi-Limpopo Confluence area (southern Africa). J. Archaeol. Sci. 2019, 102, 48–60. [Google Scholar] [CrossRef]
- Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage earth Engine© applications. Int. J. Digit. Earth 2017, 10, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Tapete, D. Tracking human-induced landscape disturbance at the nasca lines UNESCO world heritage site in Peru with COSMO-SkyMed InSAR. Remote Sens. 2018, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Adamopoulos, E.; Rinaudo, F. UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art. Drones 2020, 4, 46. [Google Scholar] [CrossRef]
- Gavryushkina, M. The potential and problems of volumetric 3D modeling in archaeological stratigraphic analysis: A case study from Chlorakas-Palloures, Cyprus. Digit. Appl. Archaeol. Cult. Herit. 2021, 21, e00184. [Google Scholar] [CrossRef]
- Orengo, H.A.; Garcia-Molsosa, A. A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery. J. Archaeol. Sci. 2019, 112, 105013. [Google Scholar] [CrossRef]
- Boykov, Y.; Gareth, F. Graph Cuts and Efficient N-D Image Segmentation. Int. J. Comput. Vision 2006, 70, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lee, X. Four-Band Thermal Mosaicking: A New Method to Process Infrared Thermal Imagery of Urban Landscapes from UAV Flights. Remote Sens. 2019, 11, 1365. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khelifi, A.; Ciccone, G.; Altaweel, M.; Basmaji, T.; Ghazal, M. Autonomous Service Drones for Multimodal Detection and Monitoring of Archaeological Sites. Appl. Sci. 2021, 11, 10424. https://doi.org/10.3390/app112110424
Khelifi A, Ciccone G, Altaweel M, Basmaji T, Ghazal M. Autonomous Service Drones for Multimodal Detection and Monitoring of Archaeological Sites. Applied Sciences. 2021; 11(21):10424. https://doi.org/10.3390/app112110424
Chicago/Turabian StyleKhelifi, Adel, Gabriele Ciccone, Mark Altaweel, Tasnim Basmaji, and Mohammed Ghazal. 2021. "Autonomous Service Drones for Multimodal Detection and Monitoring of Archaeological Sites" Applied Sciences 11, no. 21: 10424. https://doi.org/10.3390/app112110424
APA StyleKhelifi, A., Ciccone, G., Altaweel, M., Basmaji, T., & Ghazal, M. (2021). Autonomous Service Drones for Multimodal Detection and Monitoring of Archaeological Sites. Applied Sciences, 11(21), 10424. https://doi.org/10.3390/app112110424