Analytical Solution of Stress in a Transversely Isotropic Floor Rock Mass under Distributed Loading in an Arbitrary Direction
Abstract
:1. Introduction
2. The Transverse Isotropic Model of Layered Rock Mass
2.1. The Transverse Isotropic Elastic Constitutive Model
2.2. A Semi-Infinite Plane Subjected to Vertically Distributed Stresses
- (1)
- Equilibrium differential equation
- (2)
- geometric equation
- (3)
- physical equations
- (4)
- boundary conditionsWhen , , .where: is the function of , .
2.3. A Semi-Infinite Plane Subjected to Horizontally Distributed Stresses
2.4. A Semi-Infinite Plane Subjected to Distributed Stresses in Any Direction
3. Verification against Numerical Simulations
4. The Transverse Isotropic Stress Distribution Law
4.1. The Effect of E1/E2 on Stress Distribution
4.2. The Effect of μ1/μ2 on Stress Distribution
4.3. The Effect of the Formation Dip Angle on Stress Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatelier, N.; Pellet, F.; Loret, B. Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int. J. Rock Mech. Min. Sci. 2002, 39, 335–354. [Google Scholar] [CrossRef]
- Xu, G.; He, C.; Wang, X. Mechanical behavior of transversely isotropic rocks under uniaxial compression governed by micro-structure and micro-parameters. Bull. Eng. Geol. Environ. 2020, 79, 1979–2004. [Google Scholar] [CrossRef]
- Shang, J.; Duan, K.; Gui, Y.; Handley, K.; Zhao, Z. Numerical investigation of the direct tensile behaviour of laminated and transversely isotropic rocks containing incipient bedding planes with different strengths. Comput. Geotech. 2017, 104, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.W.; He, C.; Chen, Z.Q.; Su, A. Transverse Isotropy of Phyllite under Brazilian Tests: Laboratory Testing and Numerical Simulations. Rock Mech. Rock Eng. 2018, 51, 1111–1135. [Google Scholar] [CrossRef]
- Nathan, D.; Morteza, N.; Benot, V.; Amann, F.; Giulio, M. On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks. Eng. Fract. Mech. 2018, 201, 56–79. [Google Scholar] [CrossRef]
- Aliabadian, Z.; Zhao, G.F.; Russell, A.R. Crack development in transversely isotropic sandstone discs subjected to Brazilian tests observed using digital image correlation. Int. J. Rock Mech. Min. Sci. 2019, 119, 211–221. [Google Scholar] [CrossRef]
- Li, K.; Cheng, Y.; Yin, Z.-Y.; Han, D.; Meng, J. Size effects in a transversely isotropic rock under brazilian tests: Laboratory testing. Rock Mech. Rock Eng. 2020, 53, 1–20. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. A crack-induced stress approach to describe the tensile strength of transversely isotropic rocks. Can. Geotech. J. 2002, 39, 1–13. [Google Scholar] [CrossRef]
- Pietruszczak, S.; Mroz, Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor. Comput. Geotech. 2002, 6, 105–112. [Google Scholar] [CrossRef]
- Togashi, Y.; Kikumoto, M.; Tani, K. Determining anisotropic elastic parameters of transversely isotropic rocks through single torsional shear test and theoretical analysis. J. Pet. Sci. Eng. 2018, 169, 184–199. [Google Scholar] [CrossRef]
- Mambou, L.L.; Ngueyep, N.; Dop, J. Numerical investigations of stresses and strains redistribution around the tunnel: Influence of transverse isotropic behavior of granitic rock, in situ stress and shape of tunnel. J. Min. Sci. 2015, 51, 497–505. [Google Scholar] [CrossRef]
- Song, I.; Suh, M.; Woo, Y.K.; Hao, T. Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements. Eng. Geol. 2004, 72, 293–308. [Google Scholar] [CrossRef]
- Wang, C.D.; Tzeng, C.S.; Pan, E.; Liao, J.J. Displacements and stresses due to a vertical point load in an inhomogeneous transversely isotropic half-space. Int. J. Rock Mech. Min. Sci. 2003, 40, 667–685. [Google Scholar] [CrossRef]
- Vashishth, A.K.; Poonam, K. Wave propagation along a cylindrical borehole in an anisotropic poroelastic solid. Geophys. J. Int. 2005, 161, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Schmitt, D.R.; Zou, C.; Chen, X. A program to calculate pulse transmission responses through transversely isotropic media. Comput. Geosci. 2018, 114, 59–72. [Google Scholar] [CrossRef]
- Hu, S.; Tan, Y.; Zhou, H.; Ru, W.; Ning, J.; Wang, J.; Huang, D.; Li, Z. Anisotropic modeling of layered rocks incorporating planes of weakness and volumetric stress. Energy Sci. Eng. 2019, 8, 789–803. [Google Scholar] [CrossRef]
- Motra, H.B.; Mager, J.; Ismail, A.; Wuttke, F.; Rabbel, W.; Köhn, D.; Thorwart, M.; Simonetta, C.; Costantino, N. Determining the influence of pressure and temperature on the elastic constants of anisotropic rock samples using ultrasonic wave techniques. J. Appl. Geophys. 2018, 159, 715–730. [Google Scholar] [CrossRef]
- Nunes, L.S.; Laura, A. A new method for determination of transverse isotropic orientation and the associated elastic parameters for intact rock. Int. J. Rock Mech. Min. Sci. 2002, 39, 257–273. [Google Scholar] [CrossRef]
- Simanjuntak, T.D.Y.F.; Marence, M.; Schleiss, A.J.; Mynett, A.E. The Interplay of In Situ Stress Ratio and Transverse Isotropy in the Rock Mass on Prestressed Concrete-Lined Pressure Tunnels. Rock Mech. Rock Eng. 2016, 49, 1–22. [Google Scholar] [CrossRef]
- Jin, W.; Arson, C. Anisotropic nonlocal damage model for materials with intrinsic transverse isotropy. Int. J. Solids Struct. 2018, 139, 29–42. [Google Scholar] [CrossRef]
- Que, X.C.; Zhu, Z.D.; Lu, W.B. Anisotropic constitutive model of pentagonal prism columnar jointed rock mass. Bull. Eng Geol. Environ. 2020, 79, 269–286. [Google Scholar] [CrossRef]
- Xu, D.-P.; Feng, X.-T.; Chen, D.-F.; Zhang, C.-Q.; Fan, Q.-X. Constitutive representation and damage degree index for the layered rock mass excavation response in underground openings. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2017, 64, 133–145. [Google Scholar] [CrossRef]
- Hu, J.; Cao, J.; Wang, H.; Wang, X.; Tian, R. 3D P-wave traveltime computation in transversely isotropic media using layer-by-layer wavefront marching. Geophys. Prospect. 2018, 66, 1303–1314. [Google Scholar] [CrossRef]
- Vu, T.M.; Sulem, J.; Subrin, D.; Monin, N. Semi-Analytical Solution for Stresses and Displacements in a Tunnel Excavated in Transversely Isotropic Formation with Non-Linear Behavior. Rock Mech. Rock Eng. 2012, 46, 213–229. [Google Scholar] [CrossRef]
- Mahjoub, M.; Rouabhi, A.; Tijani, M.; Granet, S. An approach to model the mechanical behavior of transversely isotropic materials. Int. J. Numer. Anal. Methods Geomech. 2016, 40, 942–961. [Google Scholar] [CrossRef]
- Olsen-Kettle, L. Using ultrasonic investigations to develop anisotropic damage models for initially transverse isotropic materials undergoing damage to remain transverse isotropic. Int. J. Solids Struct. 2018, 138, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Mahabadi, O.K.; Lisjak, A.; Munjiza, A.; Grasselli, G. New combined finite-discrete element numerical code for geomechanical applications. Int. J. Geomech. 2012, 12, 676–688. [Google Scholar] [CrossRef]
- Chen, J.; Lan, H.; Macciotta, R.; Wu, Y.; Li, Q.; Zhao, X. Anisotropy rather than transverse isotropy in Longmaxi shale and the potential role of tectonic stress. Eng. Geol. 2018, 247, 38–47. [Google Scholar] [CrossRef]
- Tonon, F.; Amadei, B. Effect of Elastic Anisotropy on Tunnel Wall Displacements behind a Tunnel Face. Rock Mech. Rock Eng. 2002, 35, 141–160. [Google Scholar] [CrossRef]
- Kong, S.C. Interaction between transverse isotropy rock slope and supporting structure. J. Cent. South Univ. Technol. 2008, 15, 415–423. [Google Scholar]
- Fang, X.D. A revisit to the Lekhnitskii-Amadei solution for borehole stress calculation in tilted transversely isotropic media. Int. J. Rock Mech. Min. Sci. 2018, 104, 113–118. [Google Scholar] [CrossRef]
- Meier, T.; Rybacki, E.; Backers, T.; Dresen, G. Influence of Bedding Angle on Borehole Stability: A Laboratory Investigation of Transverse Isotropic Oil Shale. Rock Mech. Rock Eng. 2015, 48, 1535–1546. [Google Scholar] [CrossRef]
- Li, Y.; Weijermars, R. Wellbore stability analysis in transverse isotropic shales with anisotropic failure criteria. J. Pet. Sci. Eng. 2019, 176, 982–993. [Google Scholar] [CrossRef]
- Liang, R.Y.; Shatnawi, E.S. Estimating Subgrade Reaction Modulus for Transversely Isotropic Rock Medium. J. Geotech. Geoenviron. Eng. 2010, 136, 1077–1085. [Google Scholar] [CrossRef]
- Tang, X. Determining formation shear-wave transverse isotropy from borehole Stoneley-wave measurements. Geophysics 2003, 68, 118–126. [Google Scholar] [CrossRef]
- Chen, Y.F.; Ai, Z.Y. Viscoelastic analysis of transversely isotropic multilayered porous rock foundation by fractional Poyting-Thomson model. Eng. Geol. 2019, 264, 105327. [Google Scholar] [CrossRef]
- Ai, Z.Y.; Chen, Y.F. FEM-BEM coupling analysis of vertically loaded rock-socketed pile in multilayered transversely isotropic saturated media. Comput. Geotech. 2020, 120, 103437. [Google Scholar] [CrossRef]
- Qi, Z.; Choo, J.; Borja, R. On the preferential flow patterns induced by transverse isotropy and non-Darcy flow in double porosity media. Comput. Methods Appl. Mech. Eng. 2019, 353, 70–592. [Google Scholar] [CrossRef]
- Jiang, Q.; Feng, X.-T.; Hatzor, Y.; Hao, X.-J.; Li, S.-J. Mechanical anisotropy of columnar jointed basalts: An example from the Baihetan hydropower station, China. Eng. Geol. 2014, 175, 35–45. [Google Scholar] [CrossRef]
- Chen, C.S.; Chen, C.H.; Pan, E. Three-dimensional stress intensity factors of a central square crack in a transversely isotropic cuboid with arbitrary material orientations. Eng. Anal. Bound. Elem. 2009, 33, 128–136. [Google Scholar] [CrossRef]
- Xu, D.-P.; Feng, X.-T.; Cui, Y.-J.; Jiang, Q. Use of the equivalent continuum approach to model the behavior of a rock mass containing an interlayer shear weakness zone in an underground cavern excavation. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2015, 47, 35–51. [Google Scholar] [CrossRef]
- Li, X.; Lei, X.; Li, Q. Response of Velocity Anisotropy of Shale under Isotropic and Anisotropic Stress Fields. Rock Mech. Rock Eng. 2017. [Google Scholar] [CrossRef]
- Youn-Kyou, L. Stress distribution under line load in transversely isotropic rock mass. Tunn. Undergr. Space 2005, 15, 288–295. [Google Scholar]
- Ai, Z.-Y.; Cang, N.-R.; Han, J. Analytical layer-element solutions for a multi-layered transversely isotropic elastic medium subjected to axisymmetric loading. J. Zhejiang Univ. A 2012, 13, 9–17. [Google Scholar] [CrossRef]
- Wang, C.D.; Wang, W.J.; Lee, T.C. Three-dimensional buried non-linearly varying triangular loads on a transversely isotropic half-space. Int. J. Solids Struct. 2004, 41, 3013–3030. [Google Scholar] [CrossRef]
- Liao, J.J.; Hu, T.B.; Wang, C.D. Elastic solutions for an inclined transversely isotropic material due to three-dimensional point loads. J. Mech. Mater. Struct. 2008, 3, 1521–1547. [Google Scholar] [CrossRef]
- Xu, G.; He, C.; Chen, Z.; Yang, Q. Transversely isotropic creep behavior of phyllite and its influence on the long-term safety of the secondary lining of tunnels. Eng. Geol. 2020, 278, 105834. [Google Scholar] [CrossRef]
- Shen, P.; Tang, H.; Zhang, B.; Ning, Y.; He, C. Investigation on the fracture and mechanical behaviors of simulated transversely isotropic rock made of two interbedded materials. Eng. Geol. 2021, 286, 106058. [Google Scholar] [CrossRef]
- Aliabadian, Z.; Zhao, G.F.; Russell, A.R. An Analytical Study of Failure of Transversely Isotropic Rock Discs Subjected to Various Diametrical Loading Configurations. Procedia Eng. 2017, 191, 1194–1202. [Google Scholar] [CrossRef]
Model | Length of the Side/m | γ/(kg/m3) | E1/GPa | E2/GPa | μ1 | μ2 | G/GPa |
---|---|---|---|---|---|---|---|
Parameters | 100 | 2500 | 3 | 3 | 0.3 | 0.3 | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, D.; Zhao, H.; Wang, L.; Cheng, H.; Xu, J. Analytical Solution of Stress in a Transversely Isotropic Floor Rock Mass under Distributed Loading in an Arbitrary Direction. Appl. Sci. 2021, 11, 10476. https://doi.org/10.3390/app112110476
Ji D, Zhao H, Wang L, Cheng H, Xu J. Analytical Solution of Stress in a Transversely Isotropic Floor Rock Mass under Distributed Loading in an Arbitrary Direction. Applied Sciences. 2021; 11(21):10476. https://doi.org/10.3390/app112110476
Chicago/Turabian StyleJi, Dongliang, Hongbao Zhao, Lei Wang, Hui Cheng, and Jianfeng Xu. 2021. "Analytical Solution of Stress in a Transversely Isotropic Floor Rock Mass under Distributed Loading in an Arbitrary Direction" Applied Sciences 11, no. 21: 10476. https://doi.org/10.3390/app112110476
APA StyleJi, D., Zhao, H., Wang, L., Cheng, H., & Xu, J. (2021). Analytical Solution of Stress in a Transversely Isotropic Floor Rock Mass under Distributed Loading in an Arbitrary Direction. Applied Sciences, 11(21), 10476. https://doi.org/10.3390/app112110476