Valorisation of Starch Wastewater by Anaerobic Fermentation
Abstract
:1. Introduction
2. Biogas Production
2.1. Reactor Types
2.2. Degradation Performance
2.3. Pre-Acidification Step
2.4. Granule Stability and Microbial Composition (UASB Reactor)
2.5. Modelling of the Degradation Process (UASB Reactor)
3. Biohydrogen Production
4. Other Anaerobic Fermentations
4.1. Acetone–Butanol–Ethanol (ABE) Fermentation
4.2. Lactic Acid Fermentation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Global Starch Industry, ReportLinker. Available online: https://www.reportlinker.com/p05485911/Global-Starch-Industry.html?utm_source=GNW (accessed on 11 October 2021).
- Starch Europe. Available online: https://starch.eu/ (accessed on 11 October 2021).
- Bischofsberger, W.; Dichtl, N.; Rosenwinkel, K.H.; Seyfried, C.F.; Böhnke, B. Anaerobtechnik, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 396–417. [Google Scholar]
- Wang, S.; Zhang, T.; Su, H. Enhanced hydrogen production from corn starch wastewater as nitrogen source by mixed cultures. Renew. Energy 2016, 96, 1135–1141. [Google Scholar] [CrossRef]
- Shubhaneel, N.; Apurba, D.; Kumar, C.P. Corn starch industry wastewater pollution and treatment—A review. J. Biodivers. Environ. Sci. 2018, 12, 283–293. [Google Scholar]
- Santos Sánchez, A.; Lopes Silva, Y.; Araújo Kalid, R.; Cohim, E.; Andrade Torres, E. Waste bio-refineries for the cassava starch industry: New trends and review of alternatives. Renew. Sustain. Energy Rev. 2017, 73, 1265–1275. [Google Scholar] [CrossRef]
- Khongkliang, P.; Kongjan, P.; Utarapichat, B.; Reungsang, A.; O-Thong, S. Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. Int. J. Hydrogen Energy 2017, 42, 27584–27592. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Kumar, G.; Kim, S.H.; Kobayashi, T.; Xu, K.Q.; Guo, W.; Hao Ngo, H. Enhancement Strategies for Hydrogen Production from Wastewater: A Review. Curr. Org. Chem. 2016, 20, 2744–2752. [Google Scholar] [CrossRef]
- Sklyar, V.; Epov, A.; Gladchenko, M.; Danilovich, D.; Kalyuzhnyi, S. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater. Appl. Biochem. Biotechnol. 2003, 109, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Speece, R.E. Anaerobic Biotechnology for Industrial Wastewaters, 1st ed.; Archae Press: Nashville, TN, USA, 1996; pp. 130–154. [Google Scholar]
- Movahedyan, H.; Assadi, A.; Parvaresh, A. Performance evaluation of an anaerobic baffled reactor treating wheat flour starch industry wastewater. Iran. J. Environ. Health Sci. Eng. 2007, 4, 77–84. [Google Scholar]
- Sun, L.; Wan, S.; Yu, Z.; Wang, Y.; Wang, S. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresour. Technol. 2021, 104, 280–288. [Google Scholar] [CrossRef]
- Parthiban, R.; Iyer, P.; Sekaran, G. Anaerobic tapered fluidized bed reactor for starch wastewater treatment and modelling using multilayer perceptron neural network. J. Environ. Sci. 2007, 19, 1416–1423. [Google Scholar]
- Colin, X.; Farinet, J.L.; Rojas, O.; Alazard, D. Anaerobic treatment of cassava starch extraction wastewater using a horizontal flow filter with bamboo as support. Bioresour. Technol. 2007, 98, 1602–1607. [Google Scholar] [CrossRef]
- Rajbhandari, B.K.; Annachhatre, A.P. Anaerobic ponds treatment of starch wastewater: Case study in Thailand. Bioresour. Technol. 2004, 95, 135–143. [Google Scholar] [CrossRef]
- Fang, C.; Boe, K.; Angelidaki, I. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresour. Technol. 2011, 102, 5734–5741. [Google Scholar] [CrossRef]
- Lu, X.; Ni, J.; Zhen, G.; Kubota, K.; Li, Y.Y. Response of morphology and microbial community structure of granules to influent COD/SO42- ratios in an upflow anerobic sludge blanket (UASB) reactor treating starch wastewater. Bioresour. Technol. 2018, 256, 456–465. [Google Scholar] [CrossRef]
- Racho, P.; Pongampornnara, A. Enhanced biogas production from modified tapioca starch wastewater. Energy Rep. 2020, 6, 744–750. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, B.; Feng, B.; Li, L.; Moideen, S.N.; Chen, H.; Mribet, C.; Li, Y.Y. Pre-acidification greatly improves granules physicochemical properties and operational stability of Upflow anaerobic sludge Blanket (UASB) reactor treating low-strength starch wastewater. Bioresour. Technol. 2020, 302, 122810. [Google Scholar] [CrossRef] [PubMed]
- Antwi, P.; Li, J.; Boadi, P.O.; Meng, J.; Quashie, F.K.; Wang, X.; Ren, N.; Buelna, G. Efficiency of an upflow anerobic sludge blanket reactor treating potato starch processing wastewater and related process kinetics, functional microbial community and sludge morphology. Bioresour. Technol. 2017, 239, 105–116. [Google Scholar] [CrossRef]
- Antwi, P.; Li, J.; Boadi, P.O.; Meng, J.; Shi, E.; Xue, C.; Zhang, Y.; Ayivi, F. Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB. Bioresour. Technol. 2017, 235, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Antwi, P.; Li, J.; Meng, J.; Deng, K.; Quashie, F.K.; Li, J.; Boadi, P.O. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater. Bioresour. Technol. 2018, 257, 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinken, L.; Huber, M.; Weichgrebe, D.; Rosenwinkel, K.H. Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests. Water Res. 2014, 64, 82–93. [Google Scholar] [CrossRef]
- Sinbuathong, N.; Sillapacharoenkul, B. Dark fermentation of starch factory wastewater with acid- and base-treated mixed microorganisms for biohydrogen production. Int. J. Hydrogen Energy 2021, 46, 16622–16630. [Google Scholar] [CrossRef]
- Wadjeam, P.; Reungsang, A.; Imai, T.; Plangklang, P. Co-digestion of cassava starch wastewater with buffalo dung for bio-hydrogen production. Int. J. Hydrogen Energy 2019, 44, 14694–14706. [Google Scholar] [CrossRef]
- Khongkliang, P.; Kongjan, P.; O-Thong, S. Hydrogen and Methane Production from Starch Processing Wastewater by Thermophilic Two-stage Anaerobic Digestion. Energy Procedia 2015, 79, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Dong, N.; Wang, L.; Zhou, Q. Thermophilic hydrogen production from starch wastewater using two-phase sequencing batch fermentation coupled with UASB methanogenic effluent recycling. Int. J. Hydrogen Energy 2014, 39, 20942–20949. [Google Scholar] [CrossRef]
- Luo, W.; Zhao, Z.; Pan, H.; Zhao, L.; Xu, C.; Yu, X. Feasibility of butanol production from wheat starch wastewater by Clostridium acetobutylicum. Energy 2018, 154, 240–248. [Google Scholar] [CrossRef]
- Ouephanit, C.; Virunanon, C.; Burapatana, V.; Chulalaksananukul, W. Butanol and ethanol production from tapioca starch wastewater by Clostridium spp. Water Sci. Technol. 2011, 64, 1774–1780. [Google Scholar] [CrossRef]
- Tosungnoen, S.; Chookietwattana, K.; Dararat, S. Lactic Acid Production from Repeated-Batch and Simultaneous Saccharification and Fermentation of Cassava Starch Wastewater by Amylolytic Lactobacillus Plantarum MSUL 702. APCBEE Procedia 2014, 8, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Jin, B.; Lant, P.; Zhou, J. Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem. Eng. J. 2005, 23, 265–276. [Google Scholar] [CrossRef]
- Stenberg, K.; Galbe, M.; Zacchi, G. The influence of lactic acid formation on the simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb. Technol. 2000, 26, 71–79. [Google Scholar] [CrossRef]
- Huang, L.; Jin, B.; Lant, P.; Zhou, J. Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. J. Chem. Technol. Biotechnol. 2003, 78, 899–906. [Google Scholar] [CrossRef]
Feedstock | Reactor | OLR (kg COD m−3 d−1) | Methane Yield (L CH4 kg COD−1) | Literature |
---|---|---|---|---|
Potato juice | UASB | 5.1 | 210 | [16] |
Potato juice | EGSB | 3.2 | 332 | [16] |
Synthetic starch wastewater | UASB | 4 | 325 | [17] |
Modified tapioca starch wastewater | UASB | 7.5 | 160 | [18] |
Modified tapioca starch wastewater | UASB (with recirculation flow) | 25 | 240 | [18] |
Feedstock | Details on Experiments | Biohydrogen Yield (L H2 kg COD−1) | Biohydrogen Productivity (mL H2 L−1 d−1) | Literature |
---|---|---|---|---|
Corn gluten water, corn steep liquor | Two isolated strains | 186.3 | 3981 | [4] |
Cassava starch processing wastewater | Thermophilic fermentation | 260 | 2163 | [7] |
Cassava starch wastewater | With base-treated bacteria | 37.4 | 3348 | [24] |
Cassava starch wastewater | With acid-treated bacteria | 22.6 | 914.4 | [24] |
Cassava starch wastewater | Co-digestion with buffalo dung | 16.9 | 839 | [25] |
Synthetic cassava starch wastewater | Two-stage process with additional methane production | 81.5 | - | [26] |
Corn starch wastewater | Thermophilic hydrogen fermentation (mixed culture) and subsequent methanogenic step | 141.9 | 3450 | [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drosg, B.; Neubauer, M.; Marzynski, M.; Meixner, K. Valorisation of Starch Wastewater by Anaerobic Fermentation. Appl. Sci. 2021, 11, 10482. https://doi.org/10.3390/app112110482
Drosg B, Neubauer M, Marzynski M, Meixner K. Valorisation of Starch Wastewater by Anaerobic Fermentation. Applied Sciences. 2021; 11(21):10482. https://doi.org/10.3390/app112110482
Chicago/Turabian StyleDrosg, Bernhard, Matthias Neubauer, Marceli Marzynski, and Katharina Meixner. 2021. "Valorisation of Starch Wastewater by Anaerobic Fermentation" Applied Sciences 11, no. 21: 10482. https://doi.org/10.3390/app112110482
APA StyleDrosg, B., Neubauer, M., Marzynski, M., & Meixner, K. (2021). Valorisation of Starch Wastewater by Anaerobic Fermentation. Applied Sciences, 11(21), 10482. https://doi.org/10.3390/app112110482