Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks
Abstract
:1. Introduction
2. Methodology of 1D CNN Seismic Damage Assessment
2.1. 1D CNN and 2D CNN Approaches
2.2. 1D CNN Architecture
3. Configuration of Three Neural Network Models
4. Case Study
4.1. Benchmark Building and NLTHA
4.2. Model Training, Validation, and Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornell, C.A.; Jalayer, F.; Hamburger, R.O.; Foutch, D.A. Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines. J. Struct. Eng. 2002, 128, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Vamvatsikos, D.; Cornell, C.A. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2002, 31, 491–514. [Google Scholar] [CrossRef]
- Jalayer, F.; Cornell, C.A. Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthq. Eng. Struct. Dyn. 2009, 38, 951–972. [Google Scholar] [CrossRef]
- Baker, J.W.; Cornell, C.A. Vector-valued intensity measures for pulse-like near-fault ground motions. Eng. Struct. 2008, 30, 1048–1057. [Google Scholar] [CrossRef]
- Baker, J.W.; Cornell, C.A. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthq. Eng. Struct. Dyn. 2005, 34, 1193–1217. [Google Scholar] [CrossRef]
- Jalayer, F.; Ebrahimian, H.; Miano, A.; Manfredi, G.; Sezen, H. Analytical fragility assessment using unscaled ground motion records. Earthq. Eng. Struct. Dyn. 2017, 46, 2639–2663. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, X. Cloud-IDA-MSA conversion of fragility curves for efficient and high-fidelity resilience assessment. J. Struct. Eng. 2021, 147, 04021049. [Google Scholar] [CrossRef]
- Jalayer, F.; Elefante, L.; De Risi, R.; Manfredi, G. Cloud Analysis revisited: Efficient fragility calculation and uncertainty propagation using simple linear regression. In Proceedings of the NCEE 2014—10th U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering, Anchorage, AK, USA, 21–25 July 2014. [Google Scholar] [CrossRef]
- Miano, A.; Jalayer, F.; Ebrahimian, H.; Prota, A. Cloud to IDA: Efficient fragility assessment with limited scaling. Earthq. Eng. Struct. Dyn. 2018, 47, 1124–1147. [Google Scholar] [CrossRef]
- Giovenale, P.; Cornell, C.A.; Esteva, L. Comparing the adequacy of alternative ground motion intensity measures for the estimation of structural responses. Earthq. Eng. Struct. Dyn. 2004, 33, 951–979. [Google Scholar] [CrossRef]
- Grigoriu, M. Do seismic intensity measures (IMs) measure up? Probab. Eng. Mech. 2016, 46, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Kostinakis, K.; Papadopoulos, M.; Athanatopoulou-Kyriakou, A. Adequacy of advanced earthquake intensity measures for estimation of damage under seismic excitation with arbitrary orientation. In Proceedings of the CCSEE 2014: International Conference on Civil, Structural and Earthquake Engineering, Paris, France, 28–29 April 2014. [Google Scholar]
- Riddell, R. On Ground Motion Intensity Indices. Earthq. Spectra 2007, 23, 147–173. [Google Scholar] [CrossRef]
- Du, A.; Padgett, J.E.; Shafieezadeh, A. Influence of intensity measure selection on simulation-based regional seismic risk assessment. Earthq. Spectra 2020, 36, 647–672. [Google Scholar] [CrossRef]
- Kostinakis, K.; Morfidis, K. Application of Artificial Neural Networks for the Assessment of the Seismic Damage of Buildings with Irregular Infills’ Distribution. Geotech. Geol. Earthq. Eng. 2020, 291–306. [Google Scholar] [CrossRef]
- Morfidis, K.; Kostinakis, K. Comparative evaluation of MFP and RBF neural networks’ ability for instant estimation of r/c buildings’ seismic damage level. Eng. Struct. 2019, 197. [Google Scholar] [CrossRef]
- Morfidis, K.; Kostinakis, K. Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks. Eng. Struct. 2018, 165, 120–141. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, X.; Tian, Y.; Huang, Y. Real-Time Seismic Damage Prediction and Comparison of Various Ground Motion Intensity Measures Based on Machine Learning. J. Earthq. Eng. 2020, 1–21. [Google Scholar] [CrossRef]
- Padgett, J.E.; Nielson, B.G.; DesRoches, R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthq. Eng. Struct. Dyn. 2008, 37, 711–725. [Google Scholar] [CrossRef]
- Wang, X.; Shafieezadeh, A.; Ye, A. Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground. Bull. Earthq. Eng. 2017, 16, 229–257. [Google Scholar] [CrossRef]
- Kostinakis, K.; Athanatopoulou, A.; Morfidis, K. Correlation between ground motion intensity measures and seismic damage of 3D R/C buildings. Eng. Struct. 2015, 82, 151–167. [Google Scholar] [CrossRef]
- Mangalathu, S.; Jeon, J.-S. Ground Motion-Dependent Rapid Damage Assessment of Structures Based on Wavelet Transform and Image Analysis Techniques. J. Struct. Eng. 2020, 146, 04020230. [Google Scholar] [CrossRef]
- Lu, X.; Xu, Y.; Tian, Y.; Cetiner, B.; Taciroglu, E. A deep learning approach to rapid regional post-event seismic damage assessment using time-frequency distributions of ground motions. Earthq. Eng. Struct. Dyn. 2021, 50, 1612–1627. [Google Scholar] [CrossRef]
- Liao, W.; Chen, X.; Lu, X.; Huang, Y.; Tian, Y. Deep Transfer Learning and Time-Frequency Characteristics-Based Identification Method for Structural Seismic Response. Front. Built Environ. 2021, 7, 58. [Google Scholar] [CrossRef]
- Yuan, X.; Tanksley, D.; Jiao, P.; Li, L.; Chen, G.; Wunsch, D. Encoding Time-Series Ground Motions as Images for Convolutional Neural Networks-Based Seismic Damage Evaluation. Front. Built Environ. 2021, 7, 103. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Kussul, E.M.; Baidyk, T.N.; Wunsch, D.C.; Makeyev, O.; Martín, A. Permutation Coding Technique for Image Recognition Systems. IEEE Trans. Neural Netw. 2006, 17, 1566–1579. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Fan, Y.; Huang, X.; Tian, L. Real-time UAV weed scout for selective weed control by adaptive robust control and machine learning algorithm. In Proceedings of the 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE, Orlando, FL, USA, 17–20 July 2016. [Google Scholar] [CrossRef]
- Baker, J.W. Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis. Bull. Seism. Soc. Am. 2007, 97, 1486–1501. [Google Scholar] [CrossRef]
- Li, H.; Yi, T.; Gu, M.; Huo, L. Evaluation of earthquake-induced structural damages by wavelet transform. Prog. Nat. Sci. 2009, 19, 461–470. [Google Scholar] [CrossRef]
- Yaghmaei-Sabegh, S. Detection of pulse-like ground motions based on continues wavelet transform. J. Seism. 2010, 14, 715–726. [Google Scholar] [CrossRef]
- Debayle, J.; Hatami, N.; Gavet, Y. Classification of time-series images using deep convolutional neural networks. In Proceedings of the Tenth International Conference on Machine Vision, 2017, Vienna, Austria, 13 April 2018. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Oates, T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In Proceedings of the Workshops at the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–26 January 2015. [Google Scholar]
- Dau, H.A.; Bagnall, A.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Keogh, E. UCR Time Series Classification Archive. Available online: https://www.cs.ucr.edu/~eamonn/time_series_data/ (accessed on 20 April 2021).
- Abdoli, S.; Cardinal, P.; Koerich, A.L. End-to-end environmental sound classification using a 1D convolutional neural network. Expert Syst. Appl. 2019, 136, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Abdeljaber, O.; Avci, O.; Gabbouj, M. 1-D convolutional neural networks for signal processing applications. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2020, 151, 107398. [Google Scholar] [CrossRef]
- Lee, G.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 2019, 4, 1237. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Y. Convergence analysis of two-layer neural networks with RELU activation. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Pang, T.; Xu, K.; Dong, Y.; Du, C.; Chen, N.; Zhu, J. Rethinking softmax cross-entropy loss for adversarial robustness. arXiv 2019, arXiv:1905.10626. (accessed on 6 April 2021). [Google Scholar]
- You, Y.; Gitman, I.; Ginsburg, B. Large batch training of convolutional networks. arXiv 2017, arXiv:1708.03888. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:160904747. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Tian, Y.; Yang, Q. On time-step in structural seismic response analysis under ground displacement/acceleration. Earthq. Eng. Eng. Vib. 2009, 8, 341–347. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines. 2008. Available online: http://plaza.ufl.edu/angelbar/courses/CAP6615_SPRING2012.pdf (accessed on 8 October 2021).
- Haselton, C.B.; Goulet, C.A.; Mitrani-Reiser, J.; Beck, J.L.; Deierlein, G.G.; Porter, K.A.; Stewart, J.P.; Taciroglu, E. An assessment to benchmark the seismic performance of a code-conforming reinforced concrete moment-frame building. Peer Rep. 2008. Available online: https://authors.library.caltech.edu/33801/1/web_PEER712_HASELTONetal.pdf (accessed on 8 October 2021).
- Mazzoni, S.; McKenna, F.; Scott, M.H.; Fenves, G.L. OpenSees command language manual. Pac. Earthq. Eng. Res. Cent. 2006. Available online: file:///C:/Users/MDPI/AppData/Local/Temp/OpenSeesCommandLanguageManualJune2006.pdf (accessed on 8 October 2021).
- Concrete02 Material–Linear Tension Softening-OpenSeesWiki n.d. Available online: https://opensees.berkeley.edu/wiki/index.php/Concrete02_Material_--_Linear_Tension_Softening (accessed on 15 April 2021).
- Steel02 Material—Giuffré-Menegotto-Pinto Model with Isotropic Strain Hardening-OpenSeesWiki n.d. Available online: https://opensees.berkeley.edu/wiki/index.php/Steel02_Material_--_Giuffré-Menegotto-Pinto_Model_with_Isotropic_Strain_Hardening (accessed on 15 April 2021).
- Hwang, S.-H.; Mangalathu, S.; Shin, J.; Jeon, J.-S. Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames. J. Build. Eng. 2020, 34, 101905. [Google Scholar] [CrossRef]
- Mangalathu, S.; Sun, H.; Nweke, C.; Yi, Z.; Burton, H.V. Classifying earthquake damage to buildings using machine learning. Earthq. Spectra 2020, 36, 183–208. [Google Scholar] [CrossRef]
- Applied Technology Council (ATC). ATC-20: Procedures for Post-Earthquake Safety Evaluation of Buildings. 1989. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/23/008/23008479.pdf (accessed on 8 October 2021).
- Applied Technology Council. ATC 40 Seismic Evaluation and Retrofit of Concrete Buildings Redwood City California. Seism Saf Commisionsion. 1996. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkozje))/reference/referencespapers.aspx?referenceid=1701260 (accessed on 8 October 2021).
- Bazzurro, P.; Cornell, C.A.; Shome, N.; Carballo, J.E. Three Proposals for Characterizing MDOF Nonlinear Seismic Response. J. Struct. Eng. 1998, 124, 1281–1289. [Google Scholar] [CrossRef]
- Luco, N.; Bazzurro, P. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses? Earthq. Eng. Struct. Dyn. 2007, 36, 1813–1835. [Google Scholar] [CrossRef]
- Li, Z.; Kotronis, P.; Wu, H. Simplified approaches for Arias Intensity correction of synthetic accelerograms. Bull. Earthq. Eng. 2017, 15, 4067–4087. [Google Scholar] [CrossRef] [Green Version]
- TensorFlow n.d. Available online: https://www.tensorflow.org/ (accessed on 15 April 2021).
- Powers, D.M.W. Evaluation: From precision, recall and f-measure to roc, informedness, markedness & correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef] [Green Version]
Model | Trainable Parameters | Memory Usage (MiB) | GMR Preprocessing Time (s) | Model Training Time (s) | Model Testing Time (s) | |||
---|---|---|---|---|---|---|---|---|
GPU | CPU | GPU | CPU | GPU | CPU | |||
1D CNN | 105,283 | 2299 | 0.08 | 0.09 | 18 | 66 | 0.11 | 0.15 |
2D CNN | 787,715 | 7423 | 106 | 104 | 504 | 6926 | 1.13 | 6 |
FNN | 313,259 | 313 | 0.08 | 0.09 | 12.7 | 14 | 0.07 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Tanksley, D.; Li, L.; Zhang, H.; Chen, G.; Wunsch, D. Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks. Appl. Sci. 2021, 11, 9844. https://doi.org/10.3390/app11219844
Yuan X, Tanksley D, Li L, Zhang H, Chen G, Wunsch D. Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks. Applied Sciences. 2021; 11(21):9844. https://doi.org/10.3390/app11219844
Chicago/Turabian StyleYuan, Xinzhe, Dustin Tanksley, Liujun Li, Haibin Zhang, Genda Chen, and Donald Wunsch. 2021. "Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks" Applied Sciences 11, no. 21: 9844. https://doi.org/10.3390/app11219844
APA StyleYuan, X., Tanksley, D., Li, L., Zhang, H., Chen, G., & Wunsch, D. (2021). Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks. Applied Sciences, 11(21), 9844. https://doi.org/10.3390/app11219844