Impact Testing of 3D Re-Entrant Honeycomb Polyamide Structure Using Split Hopkinson Pressure Bar
Abstract
:1. Introduction
2. Related Theories on the SHPB Test
3. Materials and Methods
3.1. Specimen and Material
3.2. SHPB Setup
3.3. SHPB Tests
4. Results and Discussion
4.1. Waveform Analysis
4.2. Stress–Strain Curves
4.3. Energy Absorption
4.4. Failure Mode
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.P.; Hu, H. A review on auxetic structures and polymeric materials. Sci. Res. Essays 2010, 5, 1052–1063. [Google Scholar]
- Evans, K.E.; Alderson, A. Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 2000, 12, 617–628. [Google Scholar] [CrossRef]
- Lakes, R. Foam Structures with a Negative Poisson’s Ratio. Science 1987, 235, 1038–1040. [Google Scholar] [CrossRef]
- Scarpa, F.; Panayiotou, P.; Tomlinson, G. Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J. Strain Anal. Eng. Des. 2000, 35, 383–388. [Google Scholar] [CrossRef]
- Alderson, K.L.; Simkins, V.R.; Coenen, V.L.; Davies, P.J.; Alderson, A.; Evans, K.E. How to make auxetic fibre reinforced composites. Phys. Status Solidi (b) 2005, 242, 509–518. [Google Scholar] [CrossRef]
- Choi, J.B.; Lakes, R.S. Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. Int. J. Fract. 1996, 80, 73–83. [Google Scholar] [CrossRef]
- Bianchi, M.; Scarpa, F.L.; Smith, C.W. Stiffness and energy dissipation in polyurethane auxetic foams. J. Mater. Sci. 2008, 43, 5851–5860. [Google Scholar] [CrossRef]
- Bezazi, A.; Scarpa, F. Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. Int. J. Fatigue 2007, 29, 922–930. [Google Scholar] [CrossRef]
- Scarpa, F.; Ciffo, L.G.; Yates, J.R. Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater. Struct. 2004, 13, 49. [Google Scholar] [CrossRef]
- Scarpa, F.; Bullough, W.A.; Lumley, P. Trends in acoustic properties of iron particle seeded auxetic polyurethane foam. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2004, 218, 241–244. [Google Scholar] [CrossRef]
- Shokri Rad, M.; Prawoto, Y.; Ahmad, Z. Analytical solution and finite element approach to the 3D re-entrant structures of auxetic materials. Mech. Mater. 2014, 74, 76–87. [Google Scholar] [CrossRef]
- Li, Y.; Harrysson, O.; West, H.; Cormier, D. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 2015, 69–70, 475–490. [Google Scholar]
- Wang, X.-T.; Wang, B.; Li, X.-W.; Ma, L. Mechanical properties of 3D re-entrant auxetic cellular structures. Int. J. Mech. Sci. 2017, 131–132, 396–407. [Google Scholar] [CrossRef]
- Wang, X.-T.; Li, X.-W.; Ma, L. Interlocking assembled 3D auxetic cellular structures. Mater. Des. 2016, 99, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Dikshit, V.; Nagalingam, A.P.; Yap, Y.L.; Sing, S.L.; Yeong, W.Y.; Wei, J. Crack monitoring and failure investigation on inkjet printed sandwich structures under quasi-static indentation test. Mater. Des. 2018, 137, 140–151. [Google Scholar] [CrossRef]
- Dikshit, V.; Nagalingam, A.P.; Yap, Y.L.; Sing, S.L.; Yeong, W.Y.; Wei, J. Investigation of Quasi-Static Indentation Response of Inkjet Printed Sandwich Structures under Various Indenter Geometries. Materials 2017, 10, 290. [Google Scholar] [CrossRef]
- Elipe, Á.; Carlos, J.; Lantada, A.D. Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater. Struct. 2012, 21, 105004. [Google Scholar] [CrossRef]
- Wan, H.; Ohtaki, H.; Kotosaka, S.; Hu, G. A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur. J. Mech.-A/Solids 2004, 23, 95–106. [Google Scholar] [CrossRef]
- Levy, O.; Krylov, S.; Goldfarb, I. Design considerations for negative Poisson ratio structures under large deflection for MEMS applications. Smart Mater. Struct. 2006, 15, 1459. [Google Scholar] [CrossRef] [Green Version]
- Masters, I.G.; Evans, K.E. Models for the elastic deformation of honeycombs. Compos. Struct. 1996, 35, 403–422. [Google Scholar] [CrossRef]
- Dos Reis, F.; Ganghoffer, J.F. Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput. Mater. Sci. 2012, 51, 314–321. [Google Scholar] [CrossRef]
- Essassi, K.; Rebiere, J.-L.; el Mahi, A.; Souf, M.A.B.; Bouguecha, A.; Haddar, M. Dynamic Characterization of a Bio-Based Sandwich with Auxetic Core: Experimental and Numerical Study. Int. J. Appl. Mech. 2019, 11, 1950016. [Google Scholar] [CrossRef]
- Li, C.; Shen, H.-S.; Wang, H.; Yu, Z. Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core. Int. J. Mech. Sci. 2020, 174, 105472. [Google Scholar] [CrossRef]
- Fíla, T.; Zlámal, P.; Jiroušek, O.; Falta, J.; Koudelka, P.; Kytýř, D.; Doktor, T.; Valach, J. Impact Testing of Polymer-filled Auxetics Using Split Hopkinson Pressure Bar. Adv. Eng. Mater. 2017, 19, 1700076. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mulhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EOS. Available online: https://eos.materialdatacenter.com/eo/en (accessed on 10 August 2020).
- Chen, J.; Chen, W.; Hao, H.; Huan, S.; Tao, W. Mechanical behaviors of 3D re-entrant honeycomb polyamide structure under compression. Mater. Today Commun. 2020, 24, 101062. [Google Scholar] [CrossRef]
- Bacon, C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar. Exp. Mech. 1998, 38, 242–249. [Google Scholar] [CrossRef]
- Chen, W.W. Experimental Methods for Characterizing Dynamic Response of Soft Materials. J. Dyn. Behav. Mater. 2016, 2, 2–14. [Google Scholar] [CrossRef]
- Wang, L.; Labibes, K.; Azari, Z.; Pluvinage, G. Generalization of split Hopkinson bar technique to use viscoelastic bars. Int. J. Impact Eng. 1994, 15, 669–686. [Google Scholar] [CrossRef]
- Zhao, H.; Gary, G. A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques. J. Mech. Phys. Solids 1995, 43, 1335–1348. [Google Scholar] [CrossRef]
- Wang, L.; Lai, H.; Wang, Z.; Yang, L. Studies on nonlinear visco-elastic spherical waves by characteristics analyses and its application. Int. J. Impact Eng. 2013, 55, 1–10. [Google Scholar] [CrossRef]
- Butt, H.S.U.; Xue, P. Determination of the wave propagation coefficient of viscoelastic SHPB: Significance for characterization of cellular materials. Int. J. Impact Eng. 2014, 74, 83–91. [Google Scholar] [CrossRef]
- Chen, J.; Tao, W.; Huan, S. An improved generalized Lagrangian analysis method for attenuating waves. AIP Adv. 2019, 9, 085214. [Google Scholar] [CrossRef] [Green Version]
Material | Young’s Modulus E (MPa) | Tensile Strength σB (MPa) | Elongation εB (%) | Density (g/cm3) |
---|---|---|---|---|
PA 2200 | 1500~1650 | 48 | 18 | 0.93 |
Specimen | (°) | ||||||||
---|---|---|---|---|---|---|---|---|---|
C1 | 1.2 | 1.0 | 70 | 2.6 | 5.4 | 6.4 | 7.22 | 7 | 3 |
C2 | 1.2 | 1.0 | 60 | 2.6 | 5.4 | 6.4 | 6.18 | 7 | 3 |
C3 | 1.2 | 0.5 | 50 | 2.6 | 6.0 | 6.4 | 7.34 | 7 | 3 |
C4 | 1.2 | 1.0 | 70 | 3.1 | 5.4 | 7.4 | 6.85 | 6 | 3 |
C5 | 1.2 | 1.0 | 70 | 3.6 | 5.4 | 8.4 | 6.49 | 5 | 3 |
V | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
quasi-static | 0.109 | 0.333 | 0.092 | 0.145 | 0.078 |
14 m/s | 0.333/3.1 | 0.934/2.8 | 0.278/3.0 | 0.585/4.0 | 0.834/10.7 |
18 m/s | 0.509/4.7 | 1.389/4.2 | 0.438/4.8 | 0.378/2.6 | 0.773/9.9 |
22 m/s | 0.664/6.1 | 1.701/5.1 | 0.537/5.8 | 0.733/5.1 | 1.222/15.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Tao, W.; Pang, S. Impact Testing of 3D Re-Entrant Honeycomb Polyamide Structure Using Split Hopkinson Pressure Bar. Appl. Sci. 2021, 11, 9882. https://doi.org/10.3390/app11219882
Chen J, Tao W, Pang S. Impact Testing of 3D Re-Entrant Honeycomb Polyamide Structure Using Split Hopkinson Pressure Bar. Applied Sciences. 2021; 11(21):9882. https://doi.org/10.3390/app11219882
Chicago/Turabian StyleChen, Jiangping, Weijun Tao, and Shumeng Pang. 2021. "Impact Testing of 3D Re-Entrant Honeycomb Polyamide Structure Using Split Hopkinson Pressure Bar" Applied Sciences 11, no. 21: 9882. https://doi.org/10.3390/app11219882
APA StyleChen, J., Tao, W., & Pang, S. (2021). Impact Testing of 3D Re-Entrant Honeycomb Polyamide Structure Using Split Hopkinson Pressure Bar. Applied Sciences, 11(21), 9882. https://doi.org/10.3390/app11219882