The Impact of Ski Geometry Data and Standing Height on the Risk of Falling in Recreational Alpine Skiers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Questionnaire
2.4. Statistics
3. Results
4. Discussion
4.1. Individual Factors
4.2. Equipment-Related Factors
4.3. Environmental Factors
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hermann, A.; Senner, V. Knee injury prevention in alpine skiing. A technological paradigm shift towards a mechatronic ski binding. J. Sci. Med. Sport 2021, 24, 1038–1042. [Google Scholar] [CrossRef]
- Burtscher, M.; Gatterer, H.; Flatz, M.; Sommersacher, R.; Woldrich, T.; Ruedl, G.; Hotter, B.; Lee, A.; Nachbauer, W. Effects of modern ski equipment on the overall injury rate and the pattern of injury location in alpine skiing. Clin. J. Sport Med. 2008, 18, 355–357. [Google Scholar] [CrossRef]
- Ruedl, G.; Philippe, M.; Sommersacher, R.; Dünnwald, T.; Kopp, M.; Burtscher, M. Current incidence of accidents on Austrian ski slopes. Sportverletz. Sportschaden. 2014, 28, 183–187. [Google Scholar] [PubMed]
- Posch, M.; Schranz, A.; Lener, M.; Burtscher, M.; Ruedl, G. Incidences of fatalities on Austrian ski slopes: A 10-year analysis. Int J. Environ. Res. Public Health 2020, 17, 2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, S.W. Injury case-control studies using “other injuries” as controls. Epidemiology 2008, 19, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Pühringer, R.; Werner, I.; Sommersacher, R.; Nachbauer, W. Predictors of falls in downhill skiing and snowboarding. In Science and Skiing IV; Müller, E., Lindinger, S., Stöggl, T., Eds.; Meyer & Meyer Sport Ltd.: Maidenhead, UK, 2009; pp. 183–187. [Google Scholar]
- Philippe, M.; Ruedl, G.; Feltus, G.; Woldrich, T.; Burtscher, M. How frequent and why are skiers and snowboarders falling? Sportverletz. Sportschaden. 2014, 28, 188–192. [Google Scholar]
- Senner, V.; Michel, F.I.; Lehner, S.; Brügger, O. Technical possibilities for optimizing the ski-binding-boot functional unit to reduce knee injuries in recreational alpine skiing. Sports Eng. 2013, 16, 211–228. [Google Scholar] [CrossRef]
- Spörri, J.; Kröll, J.; Gilgien, M.; Müller, E. Sidecut radius and the mechanics of turning-equipment designed to reduce risk of severe traumatic knee injuries in alpine giant slalom ski racing. Br. J. Sports Med. 2016, 50, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Kröll, J.; Spörri, J.; Gilgien, M.; Schwameder, H.; Müller, E. Sidecut radius and kinetic energy: Equipment designed to reduce risk of severe traumatic knee injuries in alpine giant slalom ski racing. Br. J. Sports Med. 2016, 50, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Spörri, J.; Kröll, J.; Fasel, B.; Aminian, K.; Müller, E. Standing height as a preventive measure for overuse injuries of the back in alpine ski racing: A kinematic and kinetic study of giant slalom. Orthop. J. Sports Med. 2018, 6, 2325967117747843. [Google Scholar] [CrossRef]
- Gilgien, M.; Spörri, J.; Kröll, J.; Müller, E. Effect of ski geometry and standing height on kinetic energy: Equipment designed to reduce risk of severe traumatic injuries in alpine downhill ski racing. Br. J. Sports Med. 2016, 50, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Ruedl, G.; Helle, K.; Tecklenburg, K.; Schranz, A.; Fink, C.; Burtscher, M. Factors associated with self-reported failure of binding release among ACL injured male and female recreational skiers: A catalyst to change ISO binding standards? Br. J. Sports Med. 2016, 50, 37–40. [Google Scholar] [CrossRef]
- Sulheim, S.; Ekeland, A.; Bahr, R. Self-estimation of ability among skiers and snowboarders in alpine skiing resorts. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Ruedl, G.; Abart, M.; Ledochowski, L.; Burtscher, M.; Kopp, M. Self-reported risk taking and risk compensation in skiers and snowboarders are associated with sensation seeking. Accid. Anal. Prev. 2012, 48, 292–296. [Google Scholar] [CrossRef]
- Brunner, F.; Ruedl, G.; Kopp, M.; Burtscher, M. Factors associated with the perception of speed among recreational skiers. PLoS ONE 2015, 10, e0132002. [Google Scholar] [CrossRef]
- Posch, M.; Ruedl, G.; Schranz, A.; Tecklenburg, K.; Burtscher, M. Is ski boot sole abrasion a potential ACL injury risk factor for male and female recreational skiers? Scand. J. Med. Sci. Sports 2019, 29, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.A.; Dahl, K.D.; Dunford, K.M.; Foody, J.N.; Zandiyeh, P.; Turnbull, T.L.; Tashman, S. Ski boot canting adjustments affect kinematic, kinetic, and postural control measures associated with fall and injury risk. J. Sci. Med. Sport 2021, 24, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Sommersacher, R.; Ruedl, G.; Nachbauer, W. Potential risk factors for knee injuries in alpine skiers. In Skiing Trauma and Safety; Johnson, R.J., Shealy, J.E., Langran, M., Eds.; ASTM International: Frederik, MD, USA, 2009; Volume 17, pp. 1–4. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Ruedl, G.; Kopp, M.; Sommersacher, R.; Woldrich, T.; Burtscher, M. Factors associated with injuries occurred on slope intersections and in snow parks compared to on-slope injuries. Accid. Anal. Prev. 2013, 50, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A. Live strong and prosper: The importance of skeletal muscle strength for healthy ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.M.; Hannafin, J.A. The mature athlete: Aging tendon and ligament. Sports Health 2014, 6, 41–48. [Google Scholar] [CrossRef]
- Koehle, M.S.; Lloyd-Smith, R.; Taunton, J.E. Alpine ski injuries and their prevention. Sports Med. 2002, 32, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Hagel, B. Skiing and Snowboarding injuries. Epidemiology Pediatric Sports Injuries 2005, 48, 74–119. [Google Scholar]
- Sulheim, S.; Holme, I.; Rodven, A.; Ekeland, A.; Bahr, R. Risk factors for injuries in alpine skiing, telemark skiing and snowboarding—Case-control study. Br. J. Sports Med. 2011, 45, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, K.A.; Ekeland, A. Effect of trail design and grooming on the incidence of injuries at alpine ski areas. Br. J. Sports Med. 2004, 38, 264–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruedl, G.; Ploner, P.; Linortner, I.; Schranz, A.; Fink, C.; Patterson, C.; Nachbauer, W.; Burtscher, M. Interaction of potential intrinsic and extrinsic risk factors in ACL injured recreational female skiers. Int. J. Sports Med. 2011, 32, 618–622. [Google Scholar] [CrossRef] [Green Version]
Risk Factors | Skier without Falls | Skier with Falls | p Value | Effect Size |
---|---|---|---|---|
Individual factors | ||||
Sex (%) | 0.844 | Phi: 0.006 | ||
Male | 51.5 (n = 523) | 50.6 (n = 80) | ||
Female | 48.5 (n = 493) | 49.4 (n = 78) | ||
Age, mean ± sd | 38.2 ± 13.4 (n = 1016) | 35.3 ± 12.3 (n = 158) | 0.019 | Cohen’s d: 0.219 |
Body height (cm) mean ± sd | 173.6 ± 8.6 (n = 1016) | 174.2 ± 10.2 (n = 158) | 0.763 | Cohen’s d: −0.068 |
Body weight (kg) mean ± sd | 75.1 ± 14.2 (n = 1014) | 75.3 ± 14.1 (n = 157) | 0.765 | Cohen’s d: −0.014 |
Fitness level (%) | <0.001 | Phi: 0.246 | ||
Very good/good | 73.1 (n = 743) | 44.3 (n = 70) | ||
Medium | 24.4 (n = 248) | 43.0 (n = 68) | ||
Weak/very weak | 2.5 (n = 25) | 12.7 (n = 20) | ||
Skill level (%) | <0.001 | Phi: 0.323 | ||
More skilled | 86.6 (n = 880) | 50.0 (n = 79) | ||
Less skilled | 13.4 (n = 136) | 50.0 (n = 79) | ||
Risk-taking behavior (%) | 0.375 | Phi: −0.026 | ||
More cautious | 66.0 (n = 671) | 69.6 (n = 110) | ||
More risky | 34.0 (n = 463) | 30.4 (n = 48) | ||
Preferred skiing speed (%) | <0.001 | Phi: 0.285 | ||
Very fast/fast | 54.1 (n = 550) | 38.0 (n = 60) | ||
Moderate | 41.7 (n = 424) | 36.7 (n = 58) | ||
Slow /very slow | 4.1 (n = 42) | 25.3 (n = 40) | ||
Equipment-related factors | ||||
Relativized ski length (%), mean ± sd | 95.4 ± 3.6 (n = 1016) | 93.1 ± 4.1 (n = 158) | <0.001 | Cohen’s d: 0.627 |
Sidecut radius (m), mean ± sd | 14.6 ± 2.9 (n = 1016) | 13.8 ± 2.9 (n = 158) | <0.001 | Cohen’s d: 0.276 |
Waist width (mm), mean ± sd | 76.1 ± 9.5 (n = 1016) | 73.5 ± 7.3 (n = 185) | 0.001 | Cohen’s d: 0.282 |
Standing height front component (mm) | 40.3 ± 5.7 (n = 1014) | 38.9 ± 5.6 (n = 157) | 0.002 | Cohen’s d: 0.246 |
Standing height rear component (mm) | 45.5 ± 6.0 (n = 1016) | 43.8 ± 6.5 (n = 158) | 0.003 | Cohen’s d: 0.280 |
Standing height ratio (%), mean ± sd | 88.6 ± 6.7 (n = 1014) | 88.9 ± 7.3 (n = 157) | 0.511 | Cohen’s d: −0.044 |
Environmental factors | ||||
Snow condition (%) | <0.001 | Phi: 0.155 | ||
Fresh snow | 13.8 (n = 140) | 7.0 (n = 11) | ||
Grippy | 57.5 (n = 584) | 43.7 (n = 69) | ||
Icy | 8.0 (n = 81) | 13.3 (n = 21) | ||
Slushy/soft | 20.8 (n = 211) | 36.1 (n = 57) | ||
Weather condition (%) | <0.040 | Phi: 0.074 | ||
Sunny | 63.9 (n = 649) | 74.1 (n = 117) | ||
Overcast | 27.8 (n = 282) | 20.9 (n = 33) | ||
Snow fall | 8.4 (n = 85) | 5.1 (n = 8) | ||
Difficulty of preferred slope (%) | <0.001 | Phi: 0.296 | ||
Easy (blue slope) | 6.0 (n = 61) | 31.0 (n = 49) | ||
Moderate (red slope) | 70.2 (n = 713) | 56.3 (n = 89) | ||
Hard (black slope) | 23.8 (n = 242) | 12.7 (n = 20) |
Risk Factor | Coefficient | Standard Error | df | p | Odds Ratio | 95% CI |
---|---|---|---|---|---|---|
Age | −0.035 | 0.008 | 1 | <0.001 | 0.966 | 0.951–0.981 |
fitness level | ||||||
Very good/good | −1.380 | 0.412 | 1 | 0.001 | 0.251 | 0.112–0.564 |
Skill level | ||||||
Less skilled | 1.024 | 0.260 | 1 | <0.001 | 2.785 | 1.672–4.638 |
Preferred skiing speed | ||||||
Moderate | −0.833 | 0.341 | 1 | 0.014 | 0.435 | 0.223–0.848 |
Relativized ski length (%) | −0.104 | 0.030 | 1 | 0.001 | 0.901 | 0.850–0.956 |
Sidecut radius (m) | 0.088 | 0.043 | 1 | 0.041 | 1.092 | 1.004–1.188 |
Snow condition | ||||||
Fresh snow | −0.982 | 0.477 | 1 | 0.039 | 0.375 | 0.147–0.954 |
Snow condition | ||||||
Grippy | −0.797 | 0.249 | 1 | 0.001 | 0.451 | 0.277–0.735 |
Slope difficulty | ||||||
Easy | 1.095 | 0.415 | 1 | 0.008 | 2.991 | 1.325–6.748 |
Intercept | 13.081 | 3.767 | 1 | 0.001 | 479,772.284 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruedl, G.; Posch, M.; Greier, K.; Faulhaber, M.; Burtscher, M. The Impact of Ski Geometry Data and Standing Height on the Risk of Falling in Recreational Alpine Skiers. Appl. Sci. 2021, 11, 9912. https://doi.org/10.3390/app11219912
Ruedl G, Posch M, Greier K, Faulhaber M, Burtscher M. The Impact of Ski Geometry Data and Standing Height on the Risk of Falling in Recreational Alpine Skiers. Applied Sciences. 2021; 11(21):9912. https://doi.org/10.3390/app11219912
Chicago/Turabian StyleRuedl, Gerhard, Markus Posch, Klaus Greier, Martin Faulhaber, and Martin Burtscher. 2021. "The Impact of Ski Geometry Data and Standing Height on the Risk of Falling in Recreational Alpine Skiers" Applied Sciences 11, no. 21: 9912. https://doi.org/10.3390/app11219912
APA StyleRuedl, G., Posch, M., Greier, K., Faulhaber, M., & Burtscher, M. (2021). The Impact of Ski Geometry Data and Standing Height on the Risk of Falling in Recreational Alpine Skiers. Applied Sciences, 11(21), 9912. https://doi.org/10.3390/app11219912