A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Science Mapping Tools
2.2. Bibliographic Data Collection
2.3. Construction and Visualization of Network Maps
- -
- In the co-authorship network, the distance between two nodes indicates their co-authorship relation, which is materialised in one line (link) depending on the number of documents of whom they have been co-authors.
- -
- In the co-occurrence network, the link between two nodes depends on the number of documents in which they occur together.
- -
- In the citation network, the distance between two nodes indicates their citation ratio, which is materialized in a line (link) depending on the number of times they have cited themselves.
- -
- Finally, in the bibliographic coupling network, the link between two nodes depends on the number of times they have cited the same documents [32].
3. Results
3.1. Authors
3.2. Countries
3.3. Source Journals
3.4. Documents
3.5. Keywords
4. Critical Literature Review
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siebert, S.; Teizer, J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
- Verykokou, S.; Ioannidis, C.; Athanasiou, G.; Doulamis, N.; Amditis, A. 3D reconstruction of disaster scenes for urban search and rescue. Multimed. Tools Appl. 2018, 77, 9691–9717. [Google Scholar] [CrossRef]
- Hausamann, D.; Zirnig, W.; Schreier, G.; Strobl, P. Monitoring of gas pipelines—A civil UAV application. Aircr. Eng. Aerosp. Technol. 2005, 77, 352–360. [Google Scholar] [CrossRef]
- Álvares, J.S.; Costa, D.B.; Melo, R.R.S. De Exploratory study of using unmanned aerial system imagery for construction site 3D mapping. Constr. Innov. 2018, 18, 301–320. [Google Scholar] [CrossRef]
- Sarabia, R.; Aquino, A.; Ponce, J.M.; López, G.; Andújar, J.M. Automated identification of crop tree crowns from uav multispectral imagery by means of morphological image analysis. Remote Sens. 2020, 12, 748. [Google Scholar] [CrossRef] [Green Version]
- Aurambout, J.P.; Gkoumas, K.; Ciuffo, B. Last mile delivery by drones: An estimation of viable market potential and access to citizens across European cities. Eur. Transp. Res. Rev. 2019, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhen, L.; Wang, S.; Lv, W.; Qu, X. Unmanned aerial vehicle scheduling problem for traffic monitoring. Comput. Ind. Eng. 2018, 122, 15–23. [Google Scholar] [CrossRef]
- Kim, H.; Mokdad, L.; Ben-Othman, J. Designing UAV Surveillance Frameworks for Smart City and Extensive Ocean with Differential Perspectives. IEEE Commun. Mag. 2018, 56, 98–104. [Google Scholar] [CrossRef]
- Burke, P.J. Demonstration and application of diffusive and ballistic wave propagation for drone-to-ground and drone-to-drone wireless communications. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Albeaino, G.; Gheisari, M.; Franz, B.W. A systematic review of unmanned aerial vehicle application areas and technologies in the AEC domain. J. Inf. Technol. Constr. 2019, 24, 381–405. [Google Scholar] [CrossRef]
- Ham, Y.; Han, K.K.; Lin, J.J.; Golparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): A review of related works. Vis. Eng. 2016, 4, Article. [Google Scholar] [CrossRef] [Green Version]
- Golizadeh, H.; Hosseini, M.R.; Edwards, D.J.; Abrishami, S.; Taghavi, N.; Banihashemi, S. Barriers to adoption of RPAs on construction projects: A task–technology fit perspective. Constr. Innov. 2019, 19, 149–169. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Dubin, R.; Schultz, T. Science Mapping. In Encyclopedia of Information Science and Technology, 3rd ed.; IGI Global: Hampshire, UK, 2014; pp. 4171–4184. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study Among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Small, H. Update on science mapping: Creating large document spaces. Scientometrics 1997, 38, 275–293. [Google Scholar] [CrossRef]
- Morris, S.A.; Van Der Veer Martens, B. Mapping research specialties. Annu. Rev. Inf. Sci. Technol. 2008, 42, 213–295. [Google Scholar] [CrossRef]
- Börner, K.; Chen, C.; Boyack, K.W. Visualizing knowledge domains. Annu. Rev. Inf. Sci. Technol. 2003, 37, 179–255. [Google Scholar] [CrossRef]
- Su, H.N.; Lee, P.C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010, 85, 65–79. [Google Scholar] [CrossRef]
- Zhou, S.; Gheisari, M. Unmanned aerial system applications in construction: A systematic review. Constr. Innov. 2018, 18, 453–468. [Google Scholar] [CrossRef]
- Greenwood, W.W.; Lynch, J.P.; Zekkos, D. Applications of UAVs in Civil Infrastructure. J. Infrastruct. Syst. 2019, 25, 04019002. [Google Scholar] [CrossRef]
- Liu, P.; Chen, A.Y.; Huang, Y.N.; Han, J.Y.; Lai, J.S.; Kang, S.C.; Wu, T.H.; Wen, M.C.; Tsai, M.H. A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct. Syst. 2014, 13, 1065–1094. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Archambault, É.; Campbell, D.; Gingras, Y.; Larivière, V. Comparing bibliometric statistics obtained from the web of science and scopus. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1320–1326. [Google Scholar] [CrossRef]
- Zhao, X.; Zuo, J.; Wu, G.; Huang, C. A bibliometric review of green building research 2000–2016. Archit. Sci. Rev. 2019, 62, 74–88. [Google Scholar] [CrossRef]
- Meho, L.I.; Rogers, Y. Citation Counting, Citation Ranking, and h-Index of Human-Computer Interaction Researchers: A Comparison of Scopus and Web of Science. J. Am. Soc. Inf. Sci. Technol. 2008, 59, 1711–1726. [Google Scholar] [CrossRef] [Green Version]
- Scopus. Available online: https://scopus.com (accessed on 1 September 2020).
- Börner, K.; Huang, W.; Linnemeier, M.; Duhon, R.J.; Phillips, P.; Ma, N.; Zoss, A.M.; Guo, H.; Price, M.A. Rete-netzwerk-red: Analyzing and visualizing scholarly networks using the Network Workbench Tool. Scientometrics 2010, 83, 863–876. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. Meas. Sch. Impact 2014, 1, 285–320. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrigos-Simon, F.J.; Narangajavana-Kaosiri, Y.; Lengua-Lengua, I. Tourism and sustainability: A bibliometric and visualization analysis. Sustainabilty 2018, 10, 1976. [Google Scholar] [CrossRef] [Green Version]
- Gizzi, F.T.; Leucci, G. Global Research Patterns on Ground Penetrating Radar (GPR). Surv. Geophys. 2018, 39, 1039–1068. [Google Scholar] [CrossRef]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, Ê.L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef] [PubMed]
- Niñerola, A.; Sánchez-Rebull, M.V.; Hernández-Lara, A.B. Tourism research on sustainability: A bibliometric analysis. Sustainabilty 2019, 11, 1377. [Google Scholar] [CrossRef] [Green Version]
- Gough, M.; Santos, S.F.; Javadi, M.; Castro, R.; Catalão, J.P.S. Prosumer flexibility: A comprehensive state-of-the-art review and scientometric analysis. Energies 2020, 13, 2710. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VOSviewer. Available online: https://vosviewer.com (accessed on 5 November 2020).
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Informetr. 2016, 10, 1178–1195. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Galarreta, J.; Kerle, N.; Gerke, M. UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning. Nat. Hazards Earth Syst. Sci. 2015, 15, 1087–1101. [Google Scholar] [CrossRef] [Green Version]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS J. Photogramm. Remote Sens. 2015, 105, 61–78. [Google Scholar] [CrossRef]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Multi-resolution feature fusion for image classification of building damages with convolutional neural networks. Remote Sens. 2018, 10, 1636. [Google Scholar] [CrossRef] [Green Version]
- Nex, F.; Duarte, D.; Tonolo, F.G.; Kerle, N. Structural building damage detection with deep learning: Assessment of a state-of-the-art CNN in operational conditions. Remote Sens. 2019, 11, 2765. [Google Scholar] [CrossRef] [Green Version]
- Kerle, N.; Nex, F.; Gerke, M.; Duarte, D.; Vetrivel, A. UAV-based structural damage mapping: A review. ISPRS Int. J. Geo-Information 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Han, K.K.; Golparvar-Fard, M. Potential of big visual data and building information modeling for construction performance analytics: An exploratory study. Autom. Constr. 2017, 73, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Ham, Y.; Kamari, M. Automated content-based filtering for enhanced vision-based documentation in construction toward exploiting big visual data from drones. Autom. Constr. 2019, 105, 102831. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Teizer, J. Geotechnical and safety protective equipment planning using range point cloud data and rule checking in building information modeling. Autom. Constr. 2015, 49, 250–261. [Google Scholar] [CrossRef]
- Golovina, O.; Teizer, J.; Pradhananga, N. Heat map generation for predictive safety planning: Preventing struck-by and near miss interactions between workers-on-foot and construction equipment. Autom. Constr. 2016, 71, 99–115. [Google Scholar] [CrossRef]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Commun. Mag. 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Zhou, Z.; Irizarry, J.; Lu, Y. A Multidimensional Framework for Unmanned Aerial System Applications in Construction Project Management. J. Manag. Eng. 2018, 34, 04018004. [Google Scholar] [CrossRef]
- Schmid, K.; Hirschmüller, H.; Dömel, A.; Grixa, I.; Suppa, M.; Hirzinger, G. View planning for multi-view stereo 3D Reconstruction using an autonomous multicopter. J. Intell. Robot. Syst. Theory Appl. 2012, 65, 309–323. [Google Scholar] [CrossRef]
- Torres, M.; Pelta, D.A.; Verdegay, J.L.; Torres, J.C. Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction. Expert Syst. Appl. 2016, 55, 441–451. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Soura, K.; Koukouvelas, I.K.; Argyropoulos, N.G. UAV vs classical aerial photogrammetry for archaeological studies. J. Archaeol. Sci. Rep. 2017, 14, 758–773. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Wallace, L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Roca, D.; Lagüela, S.; Díaz-Vilariño, L.; Armesto, J.; Arias, P. Low-cost aerial unit for outdoor inspection of building façades. Autom. Constr. 2013, 36, 128–135. [Google Scholar] [CrossRef]
- Chen, Q.; García de Soto, B.; Adey, B.T. Construction automation: Research areas, industry concerns and suggestions for advancement. Autom. Constr. 2018, 94, 22–38. [Google Scholar] [CrossRef]
- Wang, J.; Sun, W.; Shou, W.; Wang, X.; Wu, C.; Chong, H.Y.; Liu, Y.; Sun, C. Integrating BIM and LiDAR for Real-Time Construction Quality Control. J. Intell. Robot. Syst. Theory Appl. 2015, 79, 417–432. [Google Scholar] [CrossRef]
- Asadi, K.; Kalkunte Suresh, A.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. An integrated UGV-UAV system for construction site data collection. Autom. Constr. 2020, 112, 103068. [Google Scholar] [CrossRef]
- Bang, S.; Kim, H.; Kim, H. UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching. Autom. Constr. 2017, 84, 70–80. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Lee, D.E. Sustainable application of hybrid point cloud and BIM method for tracking construction progress. Sustainability 2020, 12, 4106. [Google Scholar] [CrossRef]
- Kim, S.; Irizarry, J.; Costa, D.B. Field Test-Based UAS Operational Procedures and Considerations for Construction Safety Management: A Qualitative Exploratory Study. Int. J. Civ. Eng. 2020, 18, 919–933. [Google Scholar] [CrossRef]
- Guo, H.; Yu, Y.; Skitmore, M. Visualization technology-based construction safety management: A review. Autom. Constr. 2017, 73, 135–144. [Google Scholar] [CrossRef]
- Dominici, D.; Alicandro, M.; Massimi, V. UAV photogrammetry in the post-earthquake scenario: Case studies in L’Aquila. Geomatics, Nat. Hazards Risk 2017, 8, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Yeum, C.M.; Dyke, S.J.; Jahanshahi, M.R. Computer-aided approach for rapid post-event visual evaluation of a building Façade. Sensors 2018, 18, 3017. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Carnevali, L.; Russo, V.; Savastano, D.; Taddia, Y. Modeling and deterioration mapping of façades in historical urban context by close-range ultra-lightweight UAVs photogrammetry. Int. J. Archit. Herit. 2019, 13, 549–568. [Google Scholar] [CrossRef]
- Massimiliano, P. Image-based methods for metric surveys of buildings using modern optical sensors and tools: From 2D approach to 3D and vice versa. Int. J. Civ. Eng. Technol. 2018, 9, 729–745. [Google Scholar]
- Wang, J.A.; Ma, H.T.; Wang, C.M.; He, Y.J. Fast 3D reconstruction method based on UAV photography. ETRI J. 2018, 40, 788–793. [Google Scholar] [CrossRef]
- Kang, D.; Cha, Y.J. Autonomous UAVs for Structural Health Monitoring Using Deep Learning and an Ultrasonic Beacon System with Geo-Tagging. Comput. Civ. Infrastruct. Eng. 2018, 33, 885–902. [Google Scholar] [CrossRef]
- Barrington, L.; Ghosh, S.; Greene, M.; Har-Noy, S.; Berger, J.; Gill, S.; Lin, A.Y.M.; Huyck, C. Crowdsourcing earthquake damage assessment using remote sensing imagery. Ann. Geophys. 2011, 54, 680–687. [Google Scholar] [CrossRef]
- Malihi, S.; Zoej, M.J.V.; Hahn, M. Large-scale accurate reconstruction of buildings employing point clouds generated from UAV imagery. Remote Sens. 2018, 10, 1148. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Gao, F.; Deng, S.; Su, N. A hierarchical building segmentation in digital surface models for 3D reconstruction. Sensors 2017, 17, 222. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Tang, H.; He, S.; Shu, Y.; Mao, T.; Li, J.; Xu, Z. Unsupervised Detection of Earthquake-Triggered Roof-Holes from UAV Images Using Joint Color and Shape Features. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1823–1827. [Google Scholar] [CrossRef]
- Hay, G.J.; Castilla, G. Geographic Object-Based Image Analysis (GEOBIA): A New Name for a New Discipline; Lecture Notes in Geoinformation and Cartography; Chapter: 1.4; Springer: Berlin/Heidelberg, Germany, 2008; pp. 75–89. [Google Scholar] [CrossRef]
- Zeng, T.; Yang, W.N.; Li, X.D. Seismic damage information extent about the buildings based on low-altitude remote sensing images of mianzu quake-stricken areas. Appl. Mech. Mater. 2012, 105–107, 1889–1893. [Google Scholar] [CrossRef]
- Perez, H.; Tah, J.H.M.; Mosavi, A. Deep Learning for Detecting Building Defects Using Convolutional Neural Networks. Sensors 2019, 19, 3556. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Li, Q.; Lu, X. Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network. Autom. Constr. 2020, 109, 102994. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, L.; Zhang, Z. Use of active learning for earthquake damage mapping from UAV photogrammetric point clouds. Int. J. Remote Sens. 2018, 39, 5568–5595. [Google Scholar] [CrossRef]
- Gong, L.; Wang, C.; Wu, F.; Zhang, J.; Zhang, H.; Li, Q. Earthquake-induced building damage detection with post-event sub-meter VHR terrasar-X staring spotlight imagery. Remote Sens. 2016, 8, 887. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Zhang, J. Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system. Comput. Civ. Infrastruct. Eng. 2020, 35, 549–564. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Ontiveros-Capurata, R.E.; de Jesús Marcial-Pablo, M. Rapid urban flood damage assessment using high resolution remote sensing data and an object-based approach. Geomat. Nat. Hazards Risk 2020, 11, 906–927. [Google Scholar] [CrossRef]
- Kakooei, M.; Baleghi, Y. Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment. Int. J. Remote Sens. 2017, 38, 2511–2534. [Google Scholar] [CrossRef]
- Grazzini, A.; Chiabrando, F.; Foti, S.; Sammartano, G.; Spanò, A. A Multidisciplinary Study on the Seismic Vulnerability of St. Agostino Church in Amatrice following the 2016 Seismic Sequence. Int. J. Archit. Herit. 2020, 14, 885–902. [Google Scholar] [CrossRef]
- Ehrlich, D.; Guo, H.D.; Molch, K.; Ma, J.W.; Pesaresi, M. Identifying damage caused by the 2008 wenchuan earthquake from VHR remote sensing data. Int. J. Digit. Earth 2009, 2, 309–326. [Google Scholar] [CrossRef]
- Rakha, T.; Gorodetsky, A. Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Autom. Constr. 2018, 93, 252–264. [Google Scholar] [CrossRef]
- Hoon, Y.J.; Hong, S. Three-dimensional digital documentation of cultural heritage site based on the convergence of terrestrial laser scanning and unmanned aerial vehicle photogrammetry. ISPRS Int. J. Geo-Inf. 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G. Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). J. Archaeol. Sci. Rep. 2016, 5, 509–520. [Google Scholar] [CrossRef]
- Marques, L.; Tenedório, J.A.; Burns, M.; Româo, T.; Birra, F.; Marques, J.; Pires, A. Cultural heritage 3D modelling and visualisation within an augmented reality environment, based on geographic information technologies and mobile platforms. Archit. City Environ. 2017, 11, 117–136. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef] [Green Version]
- Erenoglu, R.C.; Erenoglu, O.; Arslan, N. Accuracy assessment of low cost UAV based city modelling for urban planning. Teh. Vjesn. 2018, 25, 1708–1714. [Google Scholar] [CrossRef]
- Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.Y.; Vosselman, G. Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sens. 2016, 8, 689. [Google Scholar] [CrossRef] [Green Version]
- Babahajiani, P.; Fan, L.; Kämäräinen, J.K.; Gabbouj, M. Urban 3D segmentation and modelling from street view images and LiDAR point clouds. Mach. Vis. Appl. 2017, 28, 679–694. [Google Scholar] [CrossRef]
- Balado, J.; Díaz-Vilariño, L.; Arias, P.; González-Jorge, H. Automatic classification of urban ground elements from mobile laser scanning data. Autom. Constr. 2018, 86, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Lu, W.; Xue, F.; Tang, P.; Li, L.H. Automatic building information model reconstruction in high-density urban areas: Augmenting multi-source data with architectural knowledge. Autom. Constr. 2018, 93, 22–34. [Google Scholar] [CrossRef]
- Melgar, S.G.; Bohórquez, M.Á.M.; Márquez, J.M.A. UhuMEB: Design, construction, and management methodology of minimum energy buildings in subtropical climates. Energies 2018, 11, 2745. [Google Scholar] [CrossRef] [Green Version]
- Gómez Melgar, S.; Martínez Bohórquez, M.Á.; Andújar Márquez, J.M. uhuMEBr: Energy Refurbishment of Existing Buildings in Subtropical Climates to Become Minimum Energy Buildings. Energies 2020, 13, 1204. [Google Scholar] [CrossRef] [Green Version]
- Sfarra, S.; Cicone, A.; Yousefi, B.; Ibarra-Castanedo, C.; Perilli, S.; Maldague, X. Improving the detection of thermal bridges in buildings via on-site infrared thermography: The potentialities of innovative mathematical tools. Energy Build. 2019, 182, 159–171. [Google Scholar] [CrossRef]
- Barreira, E.; de Freitas, V.P. Evaluation of building materials using infrared thermography. Constr. Build. Mater. 2007, 21, 218–224. [Google Scholar] [CrossRef]
- Clark, M.R.; McCann, D.M.; Forde, M.C. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT E Int. 2003, 36, 265–275. [Google Scholar] [CrossRef]
- Nardi, I.; Lucchi, E.; de Rubeis, T.; Ambrosini, D. Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography. Build. Environ. 2018, 146, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Ficapal, A.; Mutis, I. Framework for the detection, diagnosis, and evaluation of thermal bridges using infrared thermography and unmanned aerial vehicles. Buildings 2019, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Previtali, M.; Barazzetti, L.; Brumana, R.; Roncoroni, F. Thermographic analysis from uav platforms for energy efficiency retrofit applications. J. Mob. Multimed. 2013, 9, 66–82. [Google Scholar]
- Ortiz-Sanz, J.; Gil-Docampo, M.; Arza-García, M.; Cañas-Guerrero, I. IR thermography from UAVs to monitor thermal anomalies in the envelopes of traditional wine cellars: Field test. Remote Sens. 2019, 11, 1424. [Google Scholar] [CrossRef]
- Moore, J.; Tadinada, H.; Kirsche, K.; Perry, J.; Remen, F.; Tse, Z.T.H. Facility inspection using UAVs: A case study in the University of Georgia campus. Int. J. Remote Sens. 2018, 39, 7189–7200. [Google Scholar] [CrossRef]
- Carletti, V.; Greco, A.; Saggese, A.; Vento, M. An intelligent flying system for automatic detection of faults in photovoltaic plants. J. Ambient Intell. Humaniz. Comput. 2020, 11, 2027–2040. [Google Scholar] [CrossRef]
- Huerta Herraiz, Á.; Pliego Marugán, A.; García Márquez, F.P. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renew. Energy 2020, 153, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Bitelli, G.; Conte, P.; Csoknyai, T.; Franci, F.; Girelli, V.A.; Mandanici, E. Aerial thermography for energetic modelling of cities. Remote Sens. 2015, 7, 2152–2170. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Xu, Y.; Wang, X.; Jia, T.; Xia, G.; Ma, A.; Zhang, L. Pipeline leakage detection for district heating systems using multisource data in mid- and high-latitude regions. ISPRS J. Photogramm. Remote Sens. 2019, 151, 207–222. [Google Scholar] [CrossRef]
- Naughton, J.; McDonald, W. Evaluating the variability of urban land surface temperatures using drone observations. Remote Sens. 2019, 11, 1722. [Google Scholar] [CrossRef] [Green Version]
- Gaitani, N.; Burud, I.; Thiis, T.; Santamouris, M. High-resolution spectral mapping of urban thermal properties with Unmanned Aerial Vehicles. Build. Environ. 2017, 121, 215–224. [Google Scholar] [CrossRef]
- Baldinelli, G.; Bonafoni, S.; Anniballe, R.; Presciutti, A.; Gioli, B.; Magliulo, V. Spaceborne detection of roof and impervious surface albedo: Potentialities and comparison with airborne thermography measurements. Sol. Energy 2015, 113, 281–294. [Google Scholar] [CrossRef]
- Ilehag, R.; Bulatov, D.; Helmholz, P.; Belton, D. Classification and representation of commonly used roofing material using multisensorial aerial data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Matias, M.; Lopes, A. Surface radiation balance of urban materials and their impact on air temperature of an Urban canyon in Lisbon, Portugal. Appl. Sci. 2020, 10, 2193. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Tian, H.; Qiao, Z.; Zhao, M.; Liu, Y. Detailed Variations in Urban Surface Temperatures Exploration Based on Unmanned Aerial Vehicle Thermography. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 204–216. [Google Scholar] [CrossRef]
- Honjo, T.; Tsunematsu, N.; Yokoyama, H.; Yamasaki, Y.; Umeki, K. Analysis of urban surface temperature change using structure-from-motion thermal mosaicing. Urban Clim. 2017, 20, 135–147. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chiu, H.W.; Su, Y.F.; Wu, Y.C.; Cheng, K.S. Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landsc. Urban Plan. 2017, 157, 247–258. [Google Scholar] [CrossRef]
- Allinson, D.; Medjdoub, B.; Wilson, R. Toward quantitative aerial thermal infrared thermography for energy conservation in the built environment. Thermosense XXVII 2005, 5782, 133. [Google Scholar] [CrossRef]
- Ham, Y.; Golparvar-Fard, M. Automated Cost Analysis of Energy Loss in Existing Buildings Through Thermographic Inspections and CFD Analysis. In Proceedings of the ISARC 2013—30th International Symposium on Automation and Robotics in Construction with 23rd World Mining Congress, Montreal, QC, Canada, 11–15 August 2013; pp. 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Mandanici, E.; Conte, P. Aerial thermography for energy efficiency of buildings: The ChoT project. Remote Sens. Technol. Appl. Urban Environ. 2016, 10008, 1000808. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Bai, Z.; Yang, Y.; Zheng, Z.; Bian, K.; Song, L. UAV Aided Aerial-Ground IoT for Air Quality Sensing in Smart City: Architecture, Technologies, and Implementation. IEEE Netw. 2019, 33, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.D.H.; Lin, C.; Weng, C.E.; Yuan, C.S.; Lee, C.W.; Hung, C.H.; Bui, X.T.; Lo, K.C.; Lin, J.X. Vertical stratification of volatile organic compounds and their photochemical product formation potential in an industrial urban area. J. Environ. Manage. 2018, 217, 327–336. [Google Scholar] [CrossRef]
- Liu, F.; Zheng, X.; Qian, H. Comparison of particle concentration vertical profiles between downtown and urban forest park in Nanjing (China). Atmos. Pollut. Res. 2018, 9, 829–839. [Google Scholar] [CrossRef]
- Jensen, O.B. Drone city—Power, design and aerial mobility in the age of “smart cities”. Geogr. Helv. 2016, 71, 67–75. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on collaborative smart drones and internet of things for improving smartness of smart cities. IEEE Access 2019, 7, 128125–128152. [Google Scholar] [CrossRef]
- Park, K.; Ewing, R. The Usability of Unmanned Aerial Vehicles (UAVs) for Pedestrian Observation. J. Plan. Educ. Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Perboli, G.; Rosano, M. Parcel delivery in urban areas: Opportunities and threats for the mix of traditional and green business models. Transp. Res. Part C Emerg. Technol. 2019, 99, 19–36. [Google Scholar] [CrossRef]
- Park, J.Y.; Nagy, Z. Comprehensive analysis of the relationship between thermal comfort and building control research—A data-driven literature review. Renew. Sustain. Energy Rev. 2018, 82, 2664–2679. [Google Scholar] [CrossRef]
Author | Organization | Publications | Citations | Year | Co-Authorship 1 | Citation 1 | Bibliographic Coupling 1 |
---|---|---|---|---|---|---|---|
Kerle, Norman | University of Twente | 5 | 226 | 2017 | 13 | 61 | 1379 |
Gerke, Markus | University of Braunschweig | 4 | 256 | 2016 | 10 | 46 | 1386 |
Vosselman, George | University of Twente | 4 | 184 | 2016 | 8 | 29 | 1086 |
Nex, Francesco | University of Twente | 4 | 102 | 2018 | 11 | 39 | 1590 |
Teizer, Jochen | Aarhus University | 3 | 463 | 2015 | 1 | 26 | 360 |
Irizarry, Javier | Georgia Institute of Technology | 3 | 54 | 2017 | 2 | 3 | 228 |
Duarte, Diogo | University of Coimbra | 3 | 39 | 2018 | 9 | 37 | 1076 |
Golparvar-fard, Mani | University of Illinois | 2 | 253 | 2016 | 3 | 13 | 260 |
Han, Kevin K. | NC State University | 2 | 253 | 2016 | 3 | 13 | 260 |
Menouar, Hamid | Qatar Mobility Innovations Center | 2 | 225 | 2018 | 0 | 1 | 7 |
Ham, Youngjib | Texas A&M University | 2 | 179 | 2017 | 2 | 13 | 173 |
Country | Region | Publications | Citations | Year | Co-Authorship 1 | Citation 1 | Bibliographic Coupling 1 |
---|---|---|---|---|---|---|---|
USA | America | 69 | 1902 | 2018 | 43 | 141 | 6629 |
China | Asia | 39 | 527 | 2017 | 20 | 42 | 3078 |
Italy | Europe | 36 | 437 | 2018 | 9 | 31 | 1331 |
Spain | Europe | 18 | 330 | 2017 | 9 | 30 | 861 |
Germany | Europe | 15 | 566 | 2017 | 13 | 55 | 1588 |
Netherlands | Europe | 10 | 361 | 2017 | 7 | 40 | 961 |
Australia | Oceania | 10 | 199 | 2018 | 11 | 23 | 1318 |
South Korea | Asia | 10 | 108 | 2018 | 4 | 9 | 507 |
UK | Europe | 10 | 64 | 2019 | 9 | 21 | 962 |
Canada | America | 8 | 169 | 2018 | 5 | 13 | 627 |
Qatar | Asia | 3 | 346 | 2018 | 7 | 21 | 1910 |
Source Journal | Area | H Index | Publications | Citations | Year | Citation 1 | Bibliographic Coupling 1 |
---|---|---|---|---|---|---|---|
Automation in construction | Building and construction | 107 | 37 | 1180 | 2017 | 20 | 443 |
Remote sensing | Earth and planetary sciences | 99 | 16 | 205 | 2018 | 13 | 390 |
IEEE Access | Engineering | 86 | 9 | 193 | 2019 | 6 | 112 |
ISPRS International journal of geo-information | Earth and planetary sciences | 35 | 6 | 63 | 2018 | 12 | 163 |
Sensors | Engineering | 153 | 5 | 47 | 2018 | 1 | 63 |
Computer-aided civil and infrastructure engineering | Computer science | 76 | 4 | 109 | 2019 | 2 | 107 |
Renewable and sustainable energy reviews | Renewable energy | 258 | 4 | 102 | 2017 | 2 | 38 |
Journal of archaeological science: reports | Arts and humanities | 21 | 4 | 96 | 2017 | 5 | 66 |
Journal of intelligent and robotic systems: theory and applications | Computer science | 69 | 4 | 95 | 2015 | 0 | 24 |
Sustainable cities and society | Renewable energy | 43 | 4 | 35 | 2019 | 0 | 19 |
Energies | Engineering | 78 | 4 | 22 | 2018 | 0 | 15 |
Natural hazards and earth system sciences | Earth and planetary sciences | 90 | 3 | 108 | 2017 | 12 | 77 |
Building and environment | Building and construction | 138 | 3 | 71 | 2018 | 3 | 70 |
IEEE Communications magazine | Engineering | 231 | 2 | 252 | 2017 | 6 | 12 |
Title Document | Author | Area | Citations | Year | Citation 1 | Bibliographic Coupling 2 |
---|---|---|---|---|---|---|
Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle system | Siebert S. | 3D modelling and cadastral mapping | 356 | 2014 | 12 | 46 |
UAV-Enabled intelligent transportation systems for the smart city: Applications and challenges | Menouar H. | Smart city | 219 | 2017 | 2 | 8 |
Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles: a review of related works | Ham Y. | Monitoring of construction sites | 172 | 2016 | 9 | 51 |
A review of rotorcraft Unmanned Aerial Vehicle developments and applications in civil engineering | Liu P. | Applications in civil engineering | 128 | 2014 | 7 | 49 |
UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning | Fernandez Galarreta J. | Building structural damage assessment | 101 | 2015 | 6 | 24 |
Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images | Vetrivel A. | Building structural damage assessment | 86 | 2015 | 5 | 38 |
Potential of big visual data and building information modeling for construction performance analytics: An exploratory study | Han K.K. | Monitoring of construction sites | 81 | 2017 | 2 | 35 |
Visualization technology-based construction safety management: A review | Guo H. | Monitoring of construction sites | 78 | 2017 | 2 | 23 |
Low-cost aerial unit for outdoor inspection of building façades | Roca D. | Building energy inspection | 65 | 2013 | 5 | 12 |
Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping | Crommelinck S. | Cadastral mapping | 63 | 2016 | 1 | 49 |
Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging | Kang D. | Building structural damage assessment | 57 | 2018 | 0 | 41 |
Integrating BIM and LiDAR for real-time construction quality control | Wang J. | Monitoring of construction sites | 57 | 2015 | 3 | 35 |
Use of Unmanned Aerial Vehicle for quantitative infrastructure evaluation | Ellenberg A. | Building structural damage assessment | 56 | 2015 | 0 | 28 |
Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner | Xu Z. | 3D modelling | 54 | 2014 | 0 | 24 |
Keyword | Cluster | Nº of Co-Occurrences | Average Pub. Year | Link Strength | Total Link Strength |
---|---|---|---|---|---|
UAV | 137 | 2017 | 85 | 641 | |
Photogrammetry | 40 | 2017 | 59 | 201 | |
Buildings | 30 | 2017 | 64 | 173 | |
Surveys | GREEN | 24 | 2018 | 67 | 159 |
Data acquisition | 21 | 2017 | 60 | 129 | |
Point cloud | 16 | 2017 | 49 | 98 | |
LiDAR | 15 | 2017 | 55 | 105 | |
Laser scanning | 15 | 2016 | 54 | 86 | |
Construction | 16 | 2017 | 34 | 74 | |
Architectural design | 13 | 2017 | 36 | 74 | |
Automation | 11 | 2018 | 37 | 47 | |
UAS | RED | 10 | 2018 | 41 | 64 |
Building Information Model | 10 | 2016 | 32 | 63 | |
Monitoring | 9 | 2018 | 32 | 48 | |
Robotics | 9 | 2017 | 27 | 37 | |
Accident prevention | 7 | 2017 | 24 | 39 | |
Damage detection | 13 | 2017 | 42 | 91 | |
Algorithm | 12 | 2018 | 45 | 101 | |
Convolutional neural network | 9 | 2019 | 38 | 71 | |
Structural analysis | BLUE | 8 | 2018 | 29 | 55 |
Earthquakes | 8 | 2017 | 26 | 51 | |
Structural health monitoring | 7 | 2018 | 29 | 47 | |
Disasters | 7 | 2017 | 31 | 42 | |
Machine learning | 6 | 2018 | 28 | 44 | |
Drones | 95 | 2018 | 82 | 488 | |
Thermography (imaging) | 19 | 2018 | 35 | 93 | |
Image processing | 18 | 2016 | 54 | 96 | |
Inspection | YELLOW | 17 | 2018 | 44 | 100 |
Aerial photography | 14 | 2017 | 44 | 90 | |
Infrared imaging | 13 | 2017 | 37 | 83 | |
Energy efficiency | 13 | 2017 | 35 | 73 | |
Photovoltaic cells | 13 | 2018 | 28 | 72 | |
Aircraft | 38 | 2017 | 64 | 201 | |
Remote sensing | 27 | 2018 | 58 | 164 | |
Smart city | 18 | 2018 | 30 | 62 | |
Urban area | ORANGE | 14 | 2018 | 35 | 69 |
Optical radar | 13 | 2017 | 55 | 104 | |
Urban planning | 13 | 2018 | 31 | 55 | |
Aerial survey | 10 | 2017 | 45 | 82 | |
Motion planning | 9 | 2017 | 25 | 40 |
Field of Application | Common UAV Payload | Application of UAV | References in Text |
---|---|---|---|
Green cluster: Mapping and 3D modelling | GPS-RTK module for geo-referencing images, camera gimbal, vision stereo cameras, RGB-D digital cameras, laser scanning sensors (LiDAR) | 3D Terrain digital reconstruction | [1,4,52,53,57] |
3D Cultural heritage modelling | [54,88,89,90,91] | ||
Red cluster: Construction monitoring | GPS, camera gimbal, RGB digital cameras, video-based cameras, laser scanning sensors (LiDAR) | Construction site monitoring in combination with Building Information Model (BIM) | [12,46,60,63] |
Safety on construction | [64,65] | ||
Blue cluster: Structural damage detection | GPS, camera gimbal, RGB digital cameras, laser scanning sensors (LiDAR) | Building damage mapping | [43,44,67,68,69,77] |
Urban damage in emergency situations | [66,83,84,85,86] | ||
Yellow cluster: Energy efficiency prospection | GPS, camera gimbal, RGB digital cameras, thermal imaging infrared cameras | Building energy inspection | [99,103,104,105,106,120] |
Photovoltaic panels inspection | [107,108] | ||
Orange cluster: Urban remote sensing | GPS, camera gimbal, RGB digital cameras, video.based cameras, laser scanning sensors (LiDAR), thermal imaging infrared cameras | 3D City digital reconstruction | [95,96] |
Urban thermal monitoring | [111,112,113,114,115,116,117,121] | ||
Urban energy system inspection | [110] | ||
Air quality control | [122,123,124] | ||
Smart city | [6,50,125,126,127] | ||
Cadastral mapping | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Videras Rodríguez, M.; Melgar, S.G.; Cordero, A.S.; Márquez, J.M.A. A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis. Appl. Sci. 2021, 11, 9966. https://doi.org/10.3390/app11219966
Videras Rodríguez M, Melgar SG, Cordero AS, Márquez JMA. A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis. Applied Sciences. 2021; 11(21):9966. https://doi.org/10.3390/app11219966
Chicago/Turabian StyleVideras Rodríguez, Marta, Sergio Gómez Melgar, Antonio Sánchez Cordero, and José Manuel Andújar Márquez. 2021. "A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis" Applied Sciences 11, no. 21: 9966. https://doi.org/10.3390/app11219966
APA StyleVideras Rodríguez, M., Melgar, S. G., Cordero, A. S., & Márquez, J. M. A. (2021). A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis. Applied Sciences, 11(21), 9966. https://doi.org/10.3390/app11219966