Moringa oleifera Leaf Powder as Functional Additive in Cookies to Protect SH-SY5Y Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biological Evaluation
2.2.1. Total Phenolic Content
2.2.2. HPLC-ESI-TOF-MS Analysis
2.2.3. Extraction of Water-Soluble Fractions
2.2.4. Cell Cultures and Treatment
2.2.5. Cell Viability and Morphology
2.2.6. Antioxidant Effect against ROS
2.2.7. Statistical Analysis
2.3. Cookie Dough Preparation and Characterization
2.3.1. Cookie Composition and Preparation
2.3.2. Panel Test
2.3.3. Chemical Element Determination with ICP-OES Technique
2.3.4. Dynamic Rheological Tests
2.3.5. SEM Morphological Analysis
3. Results
3.1. Identification of Phytochemicals Present MLP
3.2. In-Vitro Biological Evaluation of MLP Soluble Fraction (MLPsf)
3.3. Sensory, Chemical and Rheological Properties of MLP-Containing Cookies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, R.B.; Sharma, J.P.; Takahashi, T.; Juneja, L.R.; Watson, R.R.; Tomar, R.S.; Singh, M.; Jaglan, P.; Singh, M.; Chauhan, A.K.; et al. Modernization of policy for food manufacturing and farming may be necessary for global health. In The Role of Functional Food Security in Global Health; Singh, R.B., Watson, R.R., Takahashi, T., Eds.; Academic Press, Elsevier: Amsterdam, The Netherlands, 2019; Chapter 38; pp. 653–664. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Bokkon, I. Hot topic recognition of functional roles of free radicals. Curr. Neuropharmacol. 2012, 10, 287–288. [Google Scholar] [CrossRef]
- Sharma, P.; Kapoor, S. Biopharmaceutical aspects of Brassica vegetables. J. Pharmacogn. Phytochem. 2015, 4, 140–147. [Google Scholar]
- Poon, H.F.; Calabrese, V.; Scapagnini, G.; Butterfield, D.A. Free radicals: Key to brain aging and heme oxygenase as a cellular response to oxidative stress. J. Gerontol. 2004, 59A, 478–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnefoy, M.; Day, J.; Kostka, T. Antioxidants to slow aging, facts and perspectives. Press Med. 2002, 27, 1174–1184. [Google Scholar]
- Martinez-Gonzales, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Nuzzo, D.; Galizzi, G.; Amato, A.; Terzo, S.; Picone, P.; Cristaldi, L.; Mulè, F.; Di Carlo, M. Regular intake of pistachio mitigates the deleterious effects of a high fat-diet in the brain of obese mice. Antioxidants 2020, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef]
- Ghazali, H.M.; Mohammed, A.S. Moringa (Moringa oleifera) seed oil: Composition, nutritional aspects and health attributes. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press, Elsevier: Amsterdam, The Netherlands, 2010; Chapter 93; pp. 787–793. [Google Scholar] [CrossRef]
- Singh, K.K.; Kumar, K. Ethnotherapeutics of some medicinal plants used as antipyretic agent among the tribals of India. J. Econ. Taxon. Bot. 1999, 23, 135–141. [Google Scholar]
- Zeng, K.; Li, Y.; Yang, W.; Ge, Y.; Xu, L.; Ren, T.; Zhang, H.; Zhuo, R.; Peng, L.; Chen, C.; et al. Moringa oleifera seed extract protects against brain damage in both the acute and delayed stages of ischemic stroke. Exp. Geron. 2019, 122, 99–108. [Google Scholar] [CrossRef]
- Getachew, M.; Admassu, H. Production of pasta from Moringa leaves—Oat—Wheat composite flour. Cogent Food Agric. 2020, 6, 1724062. [Google Scholar] [CrossRef]
- Boateng, L.; Quarpong, W.; Ohemeng, A.; Asante, M.; Steiner-Asiedu, M. Effect of complementary foods fortified with Moringa oleifera leaf powder on hemoglobin concentration and growth of infants in the Eastern Region of Ghana. Food Sci. Nutr. 2019, 7, 302–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrncirik, K.; Frische, S. Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur. J. Lipid Sci. Technol. 2004, 106, 540–549. [Google Scholar] [CrossRef]
- Rodriguez-Perez, C.; Quintares-Piné, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Optimization of the extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crop. Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food. Principles and Practices, 2nd ed.; Food Science Text Series; Springer: New York, NY, USA; Dordrecht, The Netherlands; Heidelberg, Germany; London, UK, 2010; pp. 57–76. [Google Scholar]
- Maache-Rezzoug, Z.; Bouvier, J.M.; Allal, K.; Patras, C. Effect of principal ingredients on rheological behaviour of biscuit dough and on quality of biscuits. J. Food Eng. 1998, 35, 23–42. [Google Scholar] [CrossRef]
- Dachana, K.B.; Rajiv, J.; Indrani, D.; Prakash, J. Effects of dried Moringa (Moringa oleifera Lam) leaves on rheological, microstructural, nutritional, textural and organoleptic characteristics of cookies. J. Food Qual. 2010, 33, 660–677. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxford Med. Cell. Long. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Jaafaru, M.S.; Abd Karim, N.A.; Enas, M.E.; Rollin, P.; Mazzon, E.; Abdull Razis, A.F. Protective effect of glucosinolates hydrolytic products in neurodegenerative diseases (NDDs). Nutrients 2018, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Borgonovo, G.; De Petrocellis, L.; Schiano Moriello, A.; Bertoli, S.; Leone, A.; Battezzati, S.; Mazzini, S.; Bassoli, A. Moringin, a stable isothiocyanate from Moringa oleifera, activates the somatosensory and pain receptor TRPA1 channel in vitro. Molecules 2020, 25, 976. [Google Scholar] [CrossRef] [Green Version]
- Galuppo, M.; De Nicola, G.R.; Iori, R.; Dell’Utri, P.; Bramanti, P.; Mazzon, E. Antibacterial activity of glucomoringin bioactivated with myrosinase against two important pathogens affecting the health of long-term patients in hospitals. Molecules 2013, 18, 14340–14348. [Google Scholar] [CrossRef] [PubMed]
- Jaja-Chimedza, A.; Graf, B.L.; Simmler, C.; Kim, Y.; Kuhn, P.; Pauli, G.F.; Raskin, I. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS ONE 2017, 12, e0182658. [Google Scholar] [CrossRef] [Green Version]
- Rajan, T.S.; De Nicola, G.R.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia 2016, 110, 1–7. [Google Scholar] [CrossRef]
- Giacoppo, S.; Galluppo, M.; Montaut, S.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 2015, 106, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Zandi, P.P.; Anthony, J.C.; Khachaturian, A.S.; Stone, S.V.; Gustafson, D.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A.; Breitner, J.C. Reduced risk of Alzheimer Disease in users of antioxidant vitamin supplements. Arch. Neurol. 2004, 61, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Kouhestani, S.; Jafari, A.; Babaei, P. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Degener. Res. 2018, 3, 1827–1832. [Google Scholar] [CrossRef]
- Banjarnahor, S.D.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Indones. 2014, 23, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Sharoar, G.; Thapa, A.; Shahnawaz, M.; Ramasamy, V.S.; Woo, E.R.; Shin, S.Y. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates. J. Biomed. Sci. 2012, 19, 104. [Google Scholar] [CrossRef] [Green Version]
- Beg, T.; Jyoti, S.; Naz, F.; Rahul; Ali, F.; Ali, S.K.; Reyad, A.M.; Siddique, Y.H. Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 2018, 17, 421–429. [Google Scholar] [CrossRef] [PubMed]
Peak | RT | Meas. m/z | Calc. m/z | Err. [ppm] | Formula and Proposed Compound | Chemical Class |
---|---|---|---|---|---|---|
1 | 3.4 | 195.0504 | 195.0510 | 3 | C6H11O7→Gluconic acid | Organic acids |
2 | 3.5 | 191.0556 | 191.0561 | 2.9 | C7H11O6→Quinic acid | Organic acids |
3 | 4 | 570.0949 | 570.0957 | 1.3 | C20H28NO14S2→Glucomoringin isomer 1 | Thyoglycosides |
4 | 8.6 | 570.0970 | 570.0957 | −2.3 | C20H28NO14S2→Glucomoringin isomer 2 | Thyoglycosides |
5 | 9.7 | 164.0706 | 164.0717 | 6.8 | C9H10NO2→Phenylalanine | Aminoacids |
7 | 12.7 | 353.088 | 353.0878 | −0.6 | C16H17O9→Caffeoylquinic acid isomer 1 | Phenolic acid derivatives |
8 | 13.1 | 203.0819 | 203.0826 | 3.4 | C11H11N2O2 L-tryptophan | Aminoacids |
12 | 14.6 | 337.0924 | 337.0929 | 1.3 | C16H17O8→Coumaroylquinic isomer 1 | Phenolic acid derivatives |
14 | 15.2 | 353.0884 | 353.0878 | −1.6 | C16H17O8→Caffeoylquinic acid isomer 2 | Phenolic acid derivatives |
16 | 15.9 | 593.1511 | 593.1512 | 0.1 | C27H29O15→Multiflorin B | Flavonoids |
18 | 16.7 | 337.0928 | 337.0929 | 0.2 | C16H17O8→Coumaroylquinic isomer 2 | Phenolic acid |
19 | 17.3 | 337.0924 | 337.0929 | 1.6 | C16H17O8→Coumaroylquinic isomer 3 | Phenolic acid derivatives |
22 | 20.1 | 609.1466 | 609.1461 | −0.8 | C27H29O16→Kaempferol diglycoside | Flavonoids |
23 | 20.5 | 431.0981 | 431.0984 | 0.7 | C21H19O10→(Vitexin) Apigenin glucoside | Flavonoids |
24 | 21.6 | 463.0893 | 463.0882 | −2.4 | C21H19O12→Quercetin glycoside | Flavonoids |
25 | 23.3 | 505.1004 | 505.0988 | −3.2 | C23H21O13→Quercetin–acetyl–glycoside | Flavonoids |
26 | 24.2 | 447.0948 | 447.0933 | −3.4 | C21H19O11→Kaempferol 3-O-glucoside | Flavonoids |
27 | 24.5 | 477.1037 | 477.1038 | 0.3 | C22H21O12→Isorhamnetin 3-O-glucoside | Flavonoids |
28 | 26 | 591.1382 | 591.1355 | −4.5 | C27H27O15→Kaempferol glycoside– | Flavonoids |
hydroxy–methylglutarate | ||||||
29 | 26.4 | 489.1049 | 489.1038 | −2.2 | C23H21O12→Kaempferol acetyl glycoside isomer 1 | Flavonoids |
31 | 27.2 | 489.1064 | 489.1038 | −5.3 | C23H21O12→Kaempferol acetyl glycoside isomer 2 | Flavonoids |
32 | 28.4 | 489.1051 | 489.1038 | −2.7 | C23H21O12→Kaempferol acetyl glycoside isomer 3 | Flavonoids |
34 | 35.1 | 327.2180 | 327.2177 | −0.9 | C18H31O5→Trihydroxyoctadecadienoic acid | Fatty acids |
isomer 1 |
Class of Compounds | BD | M1.5 Dough |
---|---|---|
Biophenolsa | 362 ± 48 | 899 ± 103 |
Flavonoids | 48 ± 7 | 98 ± 16 |
Anthocyanins | 10 ± 0.5 | 10 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuzzo, D.; Picone, P.; Lozano Sanchez, J.; Borras-Linares, I.; Guiducci, A.; Muscolino, E.; San Biagio, P.L.; Dispenza, C.; Bulone, D.; Giacomazza, D.; et al. Moringa oleifera Leaf Powder as Functional Additive in Cookies to Protect SH-SY5Y Cells. Appl. Sci. 2021, 11, 9995. https://doi.org/10.3390/app11219995
Nuzzo D, Picone P, Lozano Sanchez J, Borras-Linares I, Guiducci A, Muscolino E, San Biagio PL, Dispenza C, Bulone D, Giacomazza D, et al. Moringa oleifera Leaf Powder as Functional Additive in Cookies to Protect SH-SY5Y Cells. Applied Sciences. 2021; 11(21):9995. https://doi.org/10.3390/app11219995
Chicago/Turabian StyleNuzzo, Domenico, Pasquale Picone, Jesus Lozano Sanchez, Isabel Borras-Linares, Alessandro Guiducci, Emanuela Muscolino, Pier Luigi San Biagio, Clelia Dispenza, Donatella Bulone, Daniela Giacomazza, and et al. 2021. "Moringa oleifera Leaf Powder as Functional Additive in Cookies to Protect SH-SY5Y Cells" Applied Sciences 11, no. 21: 9995. https://doi.org/10.3390/app11219995
APA StyleNuzzo, D., Picone, P., Lozano Sanchez, J., Borras-Linares, I., Guiducci, A., Muscolino, E., San Biagio, P. L., Dispenza, C., Bulone, D., Giacomazza, D., & Lapasin, R. (2021). Moringa oleifera Leaf Powder as Functional Additive in Cookies to Protect SH-SY5Y Cells. Applied Sciences, 11(21), 9995. https://doi.org/10.3390/app11219995